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ABSTRACT

There are myriad ways to analyse a dataset. But which one to trust?
In the face of such uncertainty, analysts may adopt multiverse
analysis: running all reasonable analyses on the dataset. Yet this is
cognitively and technically difficult with existing tools—how does
one specify and execute all combinations of reasonable analyses of
a dataset?—and often requires discarding existing workflows. We
present multiverse, a tool for implementing multiverse analyses
in R with expressive syntax supporting existing computational note-
book workflows. multiverse supports building up a multiverse
through local changes to a single analysis and optimises execution
by pruning redundant computations. We evaluate how multiverse
supports programming multiverse analyses using (a) principles of
cognitive ergonomics to compare with two existing multiverse
tools; and (b) case studies based on semi-structured interviews with
researchers who have successfully implemented an end-to-end anal-
ysis using multiverse. We identify design tradeoffs (e.g. increased
flexibility versus learnability), and suggest future directions for
multiverse tool design.
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1 INTRODUCTION

Statisticians and meta-science researchers propose multiverse anal-
ysis [56] and related statistical procedures [47, 55] as a way of
making exploratory data analysis (EDA) more robust and transpar-
ent. Multiverse analysis entails implementing many combinations
of alternative data analysis decisions that a researcher deems rea-
sonable and reporting on the results of these multiple analyses in
aggregate. These methods are motivated by the idea that undis-
closed researcher degrees of freedom—{flexibility in analytic decision-
making that researchers exercise during EnA—contribute to the
replication crisis and increase the probability of erroneous find-
ings [5, 54]. By specifying alternative analyses in a principled way,
multiverse analysis can expose the impact of researchers’ choices
by presenting estimates for each of many possible combinations of
analysis decisions [16].

In designing tools to support authoring multiverse analyses, it
is important to consider the existing workflows of analysts and
data science workers and how such tools might fit into these work-
flows. Studies investigating the practices of data science work-
ers [31, 32, 49] have found that experts engage in extensive itera-
tion and exploration in order to identify appropriate ways of imple-
menting and executing a data analysis. Literate programming [35]
environments such as computational notebooks are well suited for
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such workflows, as analysts can easily attempt different approaches
through trial and error and get immediate feedback.

In this paper we describe the design and implementation of
multiverse, an R library designed for analysts to implement multi-
verse analyses in RMarkdown, and evaluate how multiverse sup-
ports users in programming multiverse analyses. The multiverse
R library extends syntax in R to allow users to declare alterna-
tive analysis options through local changes in code as branches,
and integrates with the RStudio! IDE to support the immediate
feedback that users expect from a computational notebook. The
design of multiverse is grounded in prior empirical work on data
analysts’ workflows and addresses gaps we identify in state-of-
the-art solutions, such as a lack of support for analysts to quickly
alternate between writing and evaluating provisional code as they
specify a multiverse (§2). Based on this, we articulate five design
requirements for multiverse programming interfaces that inform
our solution (§3). Our approach is further informed by feedback on
an early prototype of the package gathered during an evaluation
with analysts.

We evaluate how multiverse enables users to program a multi-
verse analysis in two ways. First, to better understand the implica-
tions of different multiverse tool designs on usability, we compare
it against three multiverse programming interfaces—multiverse,
Boba [37], and mverse (a tool built on top of multiverse)—using
the cognitive dimensions of notations [6, 24] and the gulfs of execu-
tion and evaluation [28, 44]. This evaluation (§4) surfaces potential
trade-offs in the design space of multiverse APIs, such as providing
a flexible syntax versus a more constrained but familiar syntax. Sec-
ond, we conduct semi-structured interviews with three researchers,
who each discovered the library on their own and had successfully
implemented an end-to-end analysis with multiverse, which we
present as case studies (§5). These studies help us understand how
researchers learn the syntax of the API and use it to specify their
analysis. We find that users are able to use the syntax to not only
specify their analysis, but also to combine aspects of the syntax to
build new usage patterns, suggesting that the multiverse APIis
flexible and expressive enough to construct complex multiverse-
style analyses. We discuss the limitations of current multiverse
APIs, such as the lack of effective debugging support, and consider
how a stepwise debugger or realtime visualisations can be adapted
to assist with debugging multiverse analyses (§6). In addition, we
identify a need for theoretical guidance on how to declare princi-
pled multiverse analyses, and reflect on the potential of multiverse
tools to support ideas of transparent statistical reporting [20].

2 RELATED WORK
2.1 Multiverse Analysis

Exploratory data analysis (EDA), by definition, involves data ana-
lysts exploring various strategies for data processing, manipulation
and/or modeling that can lead to different results, and maybe dif-
ferent conclusions. However, what is deemed to be a reasonable
strategy may vary substantially across different scientists and re-
searchers. Illustrating this phenomena, when a crowdsourced study
presented 29 different teams of researchers with the same data set
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Figure 1: Reporting strategies, from least to most transpar-
ent: a) traditional analysis with undisclosed flexibility; b)
planned analysis; ¢) multiverse analysis. Each branching
represents a choice between different analysis options [43].
(Figure from Dragicevic et al. [20])

and research question, 29 different analysis approaches were ob-
served [53]. Even though many scientific studies present a single
analysis on a dataset, researchers often have flexibility in how to
conduct a single analysis on their data (see Figure 1a), a phenome-
non referred to as researcher degrees of freedom [23, 54]. However,
for most scientific studies, only a single analysis is reported, and
all alternative analysis paths are either not considered or deemed
not suitable, for reasons not usually disclosed [20, 25].

One proposal to address the issue of undisclosed flexibility is
pre-registration (see Figure 1b), where researchers commit to a sin-
gle statistical analysis that has been planned and registered before
collecting any data [11, 19, 45]. Although planning might partially
address this issue, choices in a pre-planned analyses may still be
arbitrary or have reasonable alternatives. Being able to specify
alternative analyses in a principled way is therefore important.
Wary of this undisclosed flexibility, some statisticians and method-
ologists have argued for approaches such as multiverse analysis,
where analysts implement all analyses stemming from reasonable
and justifiable choices in the data analysis process (Figure 1c). By
surfacing all the possible decisions that go into data construction
[55, 56] and model building [47, 55], and by reporting the outcomes
from these myriad analyses, such approaches promise an increased
transparency as well as greater understanding of the sensitivity of
outcomes on analytical choices. This allows the reader to quickly
understand and appreciate the robustness or fragility of the result
to arbitrary, yet defensible, decisions that researchers might make
during an analysis.

In describing the steps that go into creating a multiverse analysis,
we adopt the “tree of analysis” metaphor (Figure 1): “an analysis pro-
ceeds from top to bottom, and each branching represents a choice
between different analysis options” [20]. Borrowing terminology
from Dragicevic et al. [20], an analysis parameter represents a node
in the tree that has more than one child—a point in the analysis
where the analyst must decide between reasonable alternatives—
and an analysis option is one of those children. A singular analysis
(i.e. universe) is a complete path from root to leaf. Although not
exhaustive, Dragicevic et al. [20] identified four types of analysis
parameters corresponding to different types of decisions that are
likely to come up in data analysis: data substitution, data processing,
modeling and presentation; and types of analysis options that may
have been identified for each analysis parameter.

For the multiverse library to be sufficiently expressive, we iden-
tify the need to flexibly support each type of analysis param-
eter as our first design goal (D1). Moreover, when implementing
an analysis parameter in code, an analyst may need to change
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their code in more than one place (e.g., a decision may impact data
transformation and a model at the same time). Such changes are a
consequence of the same decision, and thus should be represented
by the same analysis parameter syntactically.

In addition, in a multiverse analysis certain choices made for one
parameter may be inconsistent with choices for other parameters,
resulting in inter-dependencies across multiple parameters [56],
which are referred to as procedural dependencies [37]. To ensure
expressiveness of the tool, multiverse should support specifica-
tion of procedural dependencies (D2).

2.2 Authoring Multiverse Analyses

To create a multiverse analysis, the analyst must generate and
execute all unique combinations of compatible analysis options,
at each analysis step, resulting in a large set of unique end-to-end
analyses for the same dataset. Despite a growing number of studies
using multiverse analysis or similar approaches (e.g., [2, 7, 8, 10,
12-15, 18, 46-48, 55-57]), writing code to execute all reasonable
analysis paths (excluding unreasonable paths) in a multiverse can
be quite cumbersome, and few tools exist to aid this process.

Some tools, such as Mrobust [62] and SpecR [41], are specifically
designed to support multiplexing over model specifications. These
allow users to substitute variables in a statistical model, but leave
out other important parameter types such as data processing and
data substitution [19]. Other tools, such as rdfanalysis [22] and
Boba [37], allow analysts to multiplex over the full space of analysis
parameter types, but come with other constraints on the user’s
workflow. rdfanalysis requires users to adopt a specific, rigid format
for defining analysis steps and alternative analyses, where decision
points and their corresponding code are defined as objects across
separate template files. Boba provides a flexible syntax and makes
it easier to build up a multiverse from a single analysis, but does
not support the iterative workflow of a computational notebook.
We draw inspiration from these prior efforts, and push further in
the direction of integrating our tool into existing computational
notebook environments to support interactive EDA.

2.3 Data Analysis Workflow

Data analysts have been characterised as engaging in an iterative
and exploratory process which provides “flexibility, discovery, and
innovation” [40]. This bears similarities with end-user program-
ming [31], a style of programming that is referred to as exploratory
programming [52].

Literate programming tools, which allow clear communication
of analysis and code interleaved with one another [35], have also
become increasingly popular (e.g. RMarkdown, the computational
notebook for R, and Jupyter Notebooks), and are taught to students
in introductory data science courses as a part of the data science
workflow [36]. Such tools can be particularly useful during EDA,
as they provide users with in-context, timely feedback, making it
easier to iterate on ideas quickly and diagnose errors.

While engaged in exploratory programming, analysts often need
to “make a cost/benefit tradeoff between producing high-quality
code, and spending their time and effort on quick ideation” [32].
This results in code which is “messy”, “ad hoc”, “experimental” and
“throw away” [27, 30, 34, 49], and scripts and notebooks with old
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code are kept around for provenance tracking [33]. In many ways,
keeping track of duplicates and history is analogous to implement-
ing alternative analysis paths in a multiverse. Tools which support
local versioning of code for provenance tracking and managing ex-
ploratory code [31, 33] and prototype designs [26] can help inform
the design of tools to support authoring multiverse analysis.

Taking inspiration from both the literate programming and ver-
sioning approaches, we identify three additional design goals for
multiverse. First, we need to support existing workflows of
data science workers (D3), by making multiverse authoring com-
patible with computational notebooks and conducive to in-context,
interactive exploratory data analysis. Second, to limit the disrup-
tion to existing workflows, we need to ensure closeness in syntax
to the dominant paradigms of the underlying programming
language (D4); R, for example, is a functional programming lan-
guage. The syntax for a multiverse analysis authoring tool built on
R should bear resemblance to its syntax, and the implementation
should provide sufficient abstraction to be similar to regular R use.
Finally, we should support analysts in declaring alternatives
through local changes in the code (D5); this will help retain the
context of the surrounding code in which decisions in the multi-
verse specification are being made, without affecting the shared
aspects of the analysis, facilitating iteration.

3 DESIGN AND IMPLEMENTATION OF
MULTIVERSE

Building on design requirements (D1-D5) summarised in Table 1,
we developed multiverse, a tool designed to enable analysts to
implement multiverse analyses. multiverse fully integrates within
state-of-the-art RMarkdown computational notebooks (D3), but
our general approach could be extended to other formats.

To specify a multiverse, an analyst must provide code corre-
sponding to the different analysis options available at each step in
the analysis. The multiverse package uses the meta-programming
capabilities of R to allow analysts to replace any sub-expression
in their R code with a branch() statement, the core operator of
the package. The branch() statement simultaneously defines a new
analysis parameter, its corresponding analysis options, and the code
that should be inserted at that point in the analysis for each analysis
option. This allows analysts to succinctly and quickly build up com-
plex multiverses from elementary decisions at any point in their

D1 flexibly support each type of analysis parameter

D2  support specification of procedural dependencies

D3  support existing workflows of data science workers

closeness in syntax to the dominant paradigms of the

D4 . .
underlying programming language

analysts in declaring alternatives through local changes

2 in the code

Table 1: A summary of the design goals for multiverse that
were presented in §2
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A. The dataset used has the following variables:

name (of hurricane), year (of occurence), damages (in million $), deaths,
masfem (femininity of name on a 11 point scale), fema'le (binary indicator),
category (of the storm), (minimum) pressure, (highest) wind speed.

B. The filter function is used to exclude as outliers, the two hurricanes

with most extreme deaths, Katrina and Audrey

. Ofthe other variables, only the interaction of the independent variable

(masfem) with damages and pressure are used.

D. Number of deaths is a count data for which models such as poisson or

negative binomial are appropriate.

Sarma, et al.

{r}
# load the data
hurricane_data ¢ read_csv("hurricane_data.csv")

df « hurricane_data %>%

filter(name != "Katrina" & name != "Audrey") %>%
mutate(zpressure = -scale(pressure))
fit « glm(
death ~ masfem * dam + masfem * zmin,
data = df,
family = "poisson"
)

Figure 2: An implementation of the original (single-universe) analysis conducted by Jung et al. [29] in R.

code. The multiverse package then produces and executes all anal-
ysis paths through the code, corresponding to all valid combinations
of analysis options (subject to any procedural dependencies).

We outline how a user can progressively build a multiverse
analysis using our tool, and how our design requirements (D1-D5)
are supported. We focus on the data collected by Jung et al. [29]
investigating whether hurricanes with more feminine names lead
to more deaths than those with more masculine names. Based on
several critiques of the original study [3, 9, 38, 39], Simonsohn et
al. [55] created a multiverse analysis of this dataset. We recreate this
multiverse analysis using multiverse to demonstrate the different
functionalities our tool supports. We also describe how multiverse
can be used for script-style programming.

3.1 Data Collection and Original Analysis

The dataset used by Jung et al. [29] contained information on 94
hurricanes from a list published by National Oceanic and Atmo-
spheric Administration (NoAA). For each storm, the authors com-
piled information on the year (year),> number of deaths (deaths),
minimum pressure (pressure), maximum wind speed at time of
landfall (wind), dollar amount of property damages (damage) and
hurricane severity or category of the storm (category). Nine inde-
pendent coders were asked to rate the names of the hurricanes on a
two-item 11-point scale (1 = more masculine; 11 = more feminine),
and the femininity of each name was computed as the mean of
these two items.

Figure 2 outlines the steps involved in implementing Jung et
al’s analysis [29], in which the two hurricanes with the highest
death toll were removed as outliers (Figure 2B). To test their hy-
pothesis, the authors fitted a negative binomial model using the
number of deaths as the response variable. For predictors, they used
femininity, damages, standardised value of pressure zpressure,
interaction between femininity and damages, and the interaction
between femininity and zpressure.

Several subsequent studies [3, 9, 38, 39], each proposing a dif-
ferent analysis strategy, found inconclusive or opposite results,
suggesting that the original finding may have been the result of an
idiosyncratic combination of analysis choices. Simonsohn et al. [55]
summarised all of these alternative approaches, and identified a

2the name of the variable in the dataset is given within the parentheses

number of different data transformations and modeling choices for
this dataset, producing a multiverse analysis.?

3.2 Specifying a Multiverse

We describe how an analyst might progressively create a multiverse
from the bottom up?, by modifying the single-universe analysis of
Figure 2 of the hurricane dataset.

3.2.1 The multiverse object. To start, we must first create a new
multiverse object:M <- multiverse().The multiverse object
serves as the interface for interacting with the multiverse analysis
that is being created.

3.2.2 multiverse code chunks. Computational notebooks inter-
leave rich text used to describe an analysis with code chunks im-
plementing the analysis itself. In RMarkdown, R code chunks are
indicated by chunk delimiters: ~~ " {r} ...~ " ". Creating a multi-
verse code chunk (D3, D4) is similar: ~~ "{multiverse} ... ™~

Unlike regular R code chunks, multiverse code chunks require
two arguments: the label, a unique identifier for the code chunk,
and inside, the multiverse object. Labels are optional in R code
chunks; multiverse makes them mandatory. This allows the tool
to uniquely identify code chunks as users modify them interactively,
which is necessary to internally keep track of modifications to code

3Simonsohn et al. [55] use the term specification curve analysis to refer to a multiverse
analysis

4While our example features a particular sequence for creating a multiverse, this order
is not necessarily prescribed, and could have been different.

multiverse code chunks are called with the delimiters

""" {multiverse} ...~ ". Two arguments have to be specified:
label, a unique name for the code chunk, and

inside, the name of the multiverse object.

As seen here, the value to label need not be specified by name,
but inside needs to explicitly named.

“*“{multiverse default-m-1, inside = M}

df ¢ hurricane_data %>%
filter(name % "Katrina" & name = "Audrey") %>%
mutate(zpressure = -scale(pressure))

fit « glm( death ~ masfem * dam + masfem * zmin,
data = df, family = "poisson")

Figure 3: To create a multiverse analysis in RMarkdown,
users can use a dedicated code chunk which will make calls
to multiverse compiler. It can also be used as aregular R code
chunk.
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A. There are two other reasonable alternatives for removing
outliers based on the value of death. In multiverse, we can
do this through local modifications to the original analysis.

B. Decisions, also referred to as parameters, are declared using
branch(). First argument is the name of the parameter.
Alternate analysis are passed as arguments in the form
options_name ~ option_value

C. multiverse compiles this declaration into three separate
expressions

df ¢« hurricane %>% df « hurricane %>%

filter(TRUE)

filter(name != "Katrina)

CHI 23, April 23-28, 2023, Hamburg, Germany

df « hurricane %>%
filter(name != "Katrina" & name != "Audrey")

df « hurricane %>%
filter(branch(death_outliers,

"no_exclusion" ~ TRUE,
"most_extreme" ~ name != "Katrina",
"two_most_extreme" ~ !(name %in% c("Katrina", "Audrey"))

))

df « hurricane %>%
filter(name != "Katrina" & name != "Audrey")

Figure 4: branch allows declarations of alternative ways of performing an analysis step which is multiplexed over, to create

the multiverse

chunks in the multiverse object. In the RStudio IDE, we provide a
shortcut to create code chunks with unique names, which users are
free to change.

To use functionality from the multiverse package in our hurri-
cane analysis code, we change the code chunk type from r (Figure 2,
line 1) to multiverse (Figure 3, line 1). Because we have not yet
specified any branches in our code, the output of the analysis re-
mains unchanged, but we can now use branch() statements.

3.2.3 branch(): creating an alternative analysis path. The first deci-
sion point in this analysis is to determine which points to exclude as
outliers. The original analysis removes the two hurricanes causing
the highest number of deaths to improve model fit, as including
these two data points resulted in over-dispersion (Figure 2B). In
considering alternative ways to define outliers, Simonsohn et al.
developed a principled exclusion criteria based on deaths and dam-
ages. These criteria become progressively more strict, resulting
in three ways to exclude outliers based on deaths and four ways
based on damages, yielding twelve combinations of ways to exclude
outliers.

We first implement the three possible exclusion criteria based
on deaths. We create an analysis parameter called death_outliers,
with three possible analysis options: no_exclusion,most_extreme,
and two_most_extreme. We replace the Boolean condition in the
filter call (Figure 2, line 6) with a branch() statement defining
each analysis option and the alternative code that should be inserted
for each option (Figure 4B lines 3-6). branch() can be used to re-
place any subexpression of R code with a set of alternatives, in a
flexible manner (D1, D5). In this example, we take advantage of
this property of branch() to replace just the boolean subexpression
that determines which rows of the dataset to keep; this allows us to
succinctly define different exclusion criteria. This approach also fits
well into the functional programming style familiar to R users, as
all statements in R are functions and can be recombined in similarly
flexible ways (D4). As this is the only branch() statement so far,
our code currently defines three unique analysis paths: one for each
analysis option in the death_outliers parameter (Figure 4C).

We can similarly create a damage_outliers analysis parameter
defining four additional ways to exclude outliers based on damage

(Figure 5). Below we describe how the multiverse package creates
and executes all 3 X 4 = 12 analysis paths represented by the
combinations of these two parameters’ analysis options.

3.24 Reusing analysis parameters in branch(). Jung et al. [29] fit-
ted a model with deaths, as the response variable. deaths is a
count variable with a long-tailed distribution, for which Jung et
al. decide a negative binomial model would be appropriate (see
Figure 2D). Although a reasonable choice for count data, one can
also reasonably argue for a log-linear regression model instead. In
contrast to the previous example of exclusion criteria, specifying
the model type requires changing two different locations in the
code: the specification of the deaths dependent variable (Figure 2,
line 10) and the value of the family argument (Figure 2, line 12).
However, these are not two separate decisions (i.e. analysis param-
eters), but rather a consequence of the same analysis parameter: the
choice of model.

Often, a single analysis parameter will require the analyst to
change the code in more than one location. To represent these
semantics, multiverse allows us to re-use the same analysis pa-
rameter in multiple branch() statements (D1), so long as each
branch() uses the exact same set of analysis options. In a branch on
a previously-defined parameter, option names must be the same,
but the code for each option can be different. Thus, we represent
the consequences of the choice of model with a single analysis
parameter: model. We insert two branch() statements using this
parameter, one to set the variable transformation (Figure 6, lines
2-4) and one to set the family (Figure 6, lines 14-16).

df « filter(df, branch(damage_outliers,
"no_exclusion" ~ TRUE,
"most_extreme" ~ name != "Sandy",

))

Figure 5: Subsequent branch calls will progressively expand
the multiverse, by enumerating all possible combinations
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A. Options for a particular parameter may be
inconsistent with options of other
parameters. We allow users to specify these
conditions using %when%

Sarma, et al.

“* {multiverse default-m-3, inside = M}
fit « glm(branch(model,
"linear"™ ~ log(death+1),
"poisson" ~ death

) ~ branch(interaction,
"no" ~ femininity + damage,
"yes" ~ femininity * damage
) + branch(other_predictors,

B. Certain decision may require changes to the "none" ~ NULL,
code at multiple points. Here, a gaussian "pressure" %when% (interaction = "yes") ~ femininity * zpressure,
“wind” %when% (interaction = "yes") ~ femininity * zwin,

model requires different outcome variable
and argument to family. By repeating the ) ¢
same parameter (model), we constrain them

such that each universe, where model is

linear, will use log(death+1) as outcome

variable and gaussian as the family )

C. The procedural dependency declaration
makes interaction terms between femininity
and other predictors incompatible when
there is no interaction term between
femininity and damage

log(death + 1) ~

femininity + damage

family = branch(model,
"linear" ~ gaussian,
"poisson” ~ poisson

), data = df

log(death + 1) ~
femininity * damage +
femininity * zwin

log(death + 1) ~
femininity * damage +
femininity * zpressure

Figure 6: User can define procedural dependencies between options with the Zwhen% operator. Users can also reuse parameter

names for decisions which manifest in more than one location.

3.2.5 Specifying procedural dependencies with %when%. Another
decision made by Jung et al. [29] was their choice of predictors (Fig-
ure 2C), which includes the interaction between femininity and
damage, and between femininity and zpressure. Here, the pre-
dictors damage and zpressure are used as measures of the storm
severity, with the interaction between femininity and damage in-
dicating whether the main effect is stronger in more severe storms.
There are other reasonable approaches to study the primary effect
which may include no interaction term or interaction with other
variables such as category or wind. In this case, Simonsohn et
al. [55] only included interactions between femininity and vari-
ables such as pressure, wind or category in conjunction with
the interaction between femininity and damage (Figure 6A, line
10-11).

In a multiverse analysis, there may arise such procedural depen-
dencies between two or more analysis parameters that make certain
analysis paths inconsistent, or impossible. In other words, the appli-
cability of some analysis options may be conditional on an upstream
decision. By default, multiverse assumes all combinations of op-
tions are valid. However, it provides a flexible way to specify that an
analysis option is incompatible with previously-specified analysis
options. These procedural dependencies can be specified using the
%when% operator followed by a Boolean expression, after the option
name (D2). We replicate their analysis—using the %when% we make
sure there are no interaction terms between other predictors in the
absence of the interaction term between femininity and damage.

3.3 Executing Multiverse Code

3.3.1 Executing a code chunk interactively. As with code chunks in
a typical computational notebook, users can execute a multiverse
code chunk in the interactive editor in RStudio. When a user exe-
cutes a single code chunk, multiverse internally transforms the
input from that code chunk into one unevaluated expression (R’s

internal representation of an abstract syntax tree) for each unique
combination of analysis options (§3.7) and immediately executes
the default analysis: the analysis path obtained by taking the first
analysis option at each decision point. The output of an executed
code chunk is displayed immediately below it (Figure 7), mimicking
notebooks. Analysts can change which analysis path is executed by
default. Inline code output of a single analysis path (and the ability
to select that path) is meant to support the familiar trial and error
workflow of data analysts and to aid debugging.

3.3.2  Executing the entire multiverse. To execute all unique analysis
paths in the multiverse, an analyst can call execute_multiverse()
on the multiverse object. nultiverse supports executing the indi-
vidual analysis across multiple cores or computing clusters using
existing parallel computing packages in R, such as future [4].

3.3.3 Inspecting the result. To help keep track of the declared anal-
ysis paths and, on execution, inspect the results from each path, an
analyst can call expand(M). This will return a table where each row
corresponds to a single analysis path i.e., a single universe (Figure 8).
This view provides the user with the information of which choices
have resulted in the analysis path, the entire unevaluated code
expression corresponding to each analysis, and an environment
which stores the result of the analysis corresponding to the universe.
Analysts can use this table to explore multiverse specifications with
all the tools available in R and RStudio for exploring data tables.
Analysts can use extract_variables(M, <variable names>)
to extract the supplied variable from the results of each analysis
path, returning a table similar to the output of expand(M), but
with new columns for each variable that has been extracted. This
would allow an analyst to perform tasks such as investigate the
result or extract summary statistics or data tables from all universes
simultaneously.
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### Declaring alternative specifications of regression model

The next step is to fit the model. We can use a log-linear or a poisson model for
this step. We also have to make a choice on whether to include an interaction
between ~femininity and ~damage .

{multiverse label = default-m-3, inside = M, echo = FALSE} =
fit = glm(branch(model, "linear" ~ log(death + 1), "poisson” ~ death) -~
branch(interaction,
"no" ~ femininity + damage,
“yes" ~ femininity * damage
) + branch(other_predictors,
"none” ~ NULL,
"pressure” ¥when% (interaction == "yes") ~ femininity * zpressure,
"wind" ¥when¥ (interaction = "yes") ~ femininity * zwind,
"category” ¥when% (interaction == "yes") ~ femininity * zcat,
"all" #when¥ (interaction = "yes") ~ femininity * 23,
"all_no_interaction” %when¥ (interaction == "no") ~ z3
)} + branch(covariates, "1" ~ NULL, "2" ~ year:damage, post:damage) ,
family = branch(model, "linear" ~ "gaussian", “"poisson” ~ "poissen"),
data = df.filtered)
broom: :tidy(fit)
x
Ix§
term estimate std.error statistic pvalue
<chrs <dbl> <dbl: <dbl> cdbl>
(Intercept) 1.376036e4+00 2.947776e-01 4.6680485 1.043424e-05
femininity 3.421092e-02 4.129001e-02 0.8285519 4.09525%e-01
damage 4.583125e-05 5.255963e-06 8.7198569 1.216843e-13

Figure 7: Use of multiverse code chunks in R Markdown.
Upon executing, code chunk, the user gets the results of
the default analysis. Here, the default analysis fits a log-
linear model and prints the coefficients of the model as a
dataframe.

3.4 Debugging and Diagnosing Errors

During execution of the default analysis, multiverse provides the
same set of debugging utilities that R provides. When the user
executes the entire multiverse, the tool outputs the error message,
a traceback—an object containing the entire call stack that caused
the error—and the index of the corresponding analysis path in
which the error was encountered. The execution of the remaining
analysis paths in the multiverse are not halted if any errors are
encountered. The traceback is helpful to identify the location of the
error, as often R expressions return unidentifiable error messages.
execute_universe(<universe ID>) (universe ID are found in
the table output by expand(), see Figure 8) allows analysts to
execute a particular analysis path and reproduce errors encountered
in the execution of that specific path.

3.5 Additional utilities

In a multiverse, the number of universes can grow extremely quickly,
making it challenging to keep track of all possible analysis paths.
In our simplified example, we defined five analysis parameters—
death_outliers, damage_outliers, model, main_effect,
other_predictors, and covariates—with two to six analysis
options each. Accounting for our procedural constraints, there are
504 unique analysis paths in this multiverse. Simonsohn et al. [55]
identified 1728 unique paths in their analysis. Keeping track of
so many analysis paths can entail significant cognitive load. We
provide functions to help users get an overview of the multiverse
specification, as well as perform exploratory data analysis using
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the extensive set of tools and utilities that R itself provides, such as
ggplot2 [58].

For instance, multiverse provides the extract_variables
functions to extract results from the multiverse analysis as ad-
ditional column(s) of the table described in Figure 8. Analysts who
want to better understand the composition of the multiverse can
incorporate this data structure into an analysis pipeline with other
R libraries and create their own visualisations. The multiverse
library contains documentation which describes how to create
commonly-used visualisations such as specification curves [55].
We describe these functions, and how to invoke them, in more
detail in the supplement.

3.6 Using multiverse in R Scripts

multiverse also supports users who prefer traditional script-style
programming over computational notebooks. In a script, users
can create a multiverse analysis by declaring multiverse expres-
sions with inside(M, { ... }), which can then be executed
or manipulated using the same functions described above, e.g.
execute_multiverse. Thus, the multiverse declaration from Fig-
ure 4 would become:
inside(M, {

df <- hurricane %>%
filter(branch(death_outliers,

"no_exclusion" ~ TRUE,
"most_extreme" ~ name != "Katrina",
"two_most_extreme" ~ !(name %in% c("Katrina", "Audrey"))

))

3.7 The Multiverse Compiler

When users execute a multiverse code block or a call to inside(),
the multiverse compiler takes the declared R code with branch
statements and transforms it into multiple unique R expressions,
one for every possible analysis path. This is done in two steps. First,
multiverse enumerates all possible valid parameter assignments.
A parameter assignment consists of a single assignment of an anal-
ysis option to each analysis parameter. Valid parameter assignments
are those that satisfy all procedural dependencies (e.g., %when%
clauses). Each parameter assignment corresponds to a single pos-
sible analysis path through the multiverse; or a single universe.
Second, multiverse takes each universe and uses its parameter
assignment to recursively rewrite the unevaluated multiverse code
expression into code specifically for that universe. It does this by
replacing each branch() subexpression with the subexpression cor-
responding to the parameter assignment for that branch.

3.7.1 Optimisation. Consider a multiverse with m analysis param-
eters, and n analysis options per analysis parameter on average;
this results in a multiverse with n™ distinct analyses. The naive
approach of executing all analysis paths separately would result in
an execution time of (O(mn™)). We use a tree structure to store
the output of the multiverse compiler, with each level in the tree
corresponding to a single unit of the multiverse. If the analyst is
using multiverse code chunks, each unit is a single code chunk; if
the analyst is using inside(), each unit is one call to inside().
When the user declares a unit with one or more analysis parameters,
we enumerate all combinations of the analysis options which are
added to each existing node from the previous level as children,
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death damage

.universe = outlier outlier model code
removal | removal

1 none none linear <code>
2 none none poisson

3 none one linear

4 none one poisson

5 none two linear

6 none two poisson

7 one three linear

Sarma, et al.

A list of all the values for
each parameter

Each row correspondstoa df <« hurricane_data %>%

single universe (or analysis filter(TRUE) %>%

path). The code column filter(TRUE)

contains entire unevaluated fit ¢« glm(log(death + 1) ~

code expressions used to femininity + damage + NULL,
run analyses for a each family = gaussian, data = df)
universe coef « broom::tidy(fit)

Each analysis is run in a unique environment. Thus different values,
arising from different analysis paths, can be stored in the same variable
name

Figure 8: expand( ) provides an overview of the complete decision tree of the specified multiverse, with each row corresponding

to the set of decisions creating the a particular analysis path.

followed by pruning any inconsistent analysis paths declared as
procedural dependencies. For the first unit, all nodes are the children
of a singular root node. Thus, if we declare a multiverse with m
analysis parameters, 1 analysis parameter per unit on average, and
n analysis options per analysis parameter on average, we have a
multiverse with n'™ distinct analyses and a tree with approximately

m+l_
% nodes. By executing just the code at each node in the tree,
m+1_
we reduce the execution time to: O (%) =0(n™).

This is possible because in R, environments are mutable dictio-
naries that encapsulate variable state and power scoping in the
language [59]; all code in R is executed inside an environment
that determines the variables defined for that code and the values
assigned to those variables. Moreover, every environment has a par-
ent environment, and variable bindings in the parent environment
are accessible to its child environments. We execute each node in
its own environment. Because we share parent environments for
nodes at the same level of the tree, two nodes which are children
of the same parent node will automatically have results of the par-
ent node’s computation available in their execution environment,
avoiding redundant computation.

3.8 Refinement from Early Feedback with
Users

To arrive at the design of multiverse described above, we first
built a prototype version based on our initial design criteria, then
conducted a series of informal semi-structured formative evalua-
tions®. The goal of these sessions was to assess if our approach fit
into the computational notebook workflow and to uncover early
usability issues with the tool. We recruited six graduate students or
faculty in Hcr and Psychology, who were all experienced R users.
These sessions allowed us to refine the syntax of the package by
identifying difficult-to-use or redundant aspects of the APL

Our early interviews motivated the need for the specialised code
chunk syntax. Our initial implementation provided the inside()
function and allowed users to provide code defining variables in the
multiverse using R’s operator for accessing elements of an object
(the $ operator). We found that the syntax with $ was confusing
to users, and that neither syntax supported as fluid iteration in a
notebook as we had envisioned—they introduced extra boilerplate,

Ssee Supplementary Material for the interview guide

and did not as easily support directly running code chunks or
seeing output from a single universe. This led us to implement the
multiverse code chunk approach. We kept the inside() function
for use with script-style programming, and removed the $-based
syntax altogether.

4 EVALUATING THE DESIGN SPACE OF
MULTIVERSE PROGRAMMING
INTERFACES

We performed a comparative analysis with two other programming
interfaces that support creation of multiverse analyses. We imple-
mented the same multiverse analysis of the hurricane dataset using
each of these tools to highlight the different design choices in each
of these tools. We provide the specifications in our supplement, and
below we describe relevant differences in the syntax and semantics
of each package. Specifying the same multiverse analysis in each
tool helps to ground our evaluation of all three packages, including
multiverse.

4.1 Other Multiverse Programming Interfaces

4.1.1 mverse. mverse [42] was developed as an extension to
multiverse specifically designed for educational purposes. The
goal of mverse is to provide high-level abstractions for declaring
alternative analysis paths to make it easier for novices in R and
programming in general to specify a multiverse. mverse does not
provide a universal function for declaring local variations in analy-
sis paths, but instead provides distinct functions for multiplexing
as analogs of existing functions in R. In part, mverse is an exercise
in pushing D4 (closeness in syntax to the dominant paradigms
of programming in R) to its extreme, allowing us to better under-
stand tradeoffs in the design space of multiverse tools. For example,
choosing how to exclude outliers can be implemented in mverse
using the dedicated add_filter_branch() function. Due to these
design choices, data wrangling requires lighter, less complex syntax
that is stylistically closer to the tidyverse grammar—a set of R
packages which “share an underlying design philosophy, grammar,
and data structures” [1]. While this simplification might improve
learnability and reduce errors for novices, it requires mverse to de-
fine separate methods for declaring, adding and removing different
types of transformations, at the cost of D1 (flexibly support each
type of analysis parameter).
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4.1.2 Boba. Boba [37] is language-agnostic, and users create mul-
tiverse analyses in a template file, which can be created using a
text editor or an IDE such as RStudio. After specifying their analy-
sis, through a command-line tool, users can compile their analysis
into R Scripts (one script for each analysis), execute the scripts,
and merge the results from the scripts together The template file
consists of two separate parts: (1) a Boba config block containing
JSON, and (2) an implementation of the analysis (e.g. R or Python).
This separation of the analysis is similar to C++-like separation of
header and implementation, and to describe it, we make a distinc-
tion between specifying the decision space locally at the actual site
of each analysis parameter in code versus globally in a single block
of JSON.

Boba supports three ways to create analysis parameters and
options—by specifying “decisions” as JSON globally in the Boba
config block, by writing options locally in declarations, or by us-
ing the “code block” syntax for options that span multiple lines of
code. All code in the template after the final option written in “code
block” syntax is parsed by Boba’s compiler as a part of that final
option. In order to write code which is common to all analysis paths
following the use of “code block” syntax, the user has to declare an
additional code block which consists of a single option to indicate
the end of the blocks associated with the previous analysis param-
eter. This adds a parameter to the decision tree which does not
actually represent a conceptual analysis decision. To specify pro-
cedural dependencies in Boba, users can either write “constraints”
globally in the config block or use @if operator to declare them
locally. Users can also indicate that the same conceptual decision
manifests at multiple locations by using a “link” constraint in the
config block.

Table 2 summarises the high-level differences between the tools.

Boba
API style Language-agnostic meta-programming
(preprocessor)

global JSON: “decisions” : { ... };
Parameter X Tl an dnom1.
definition local: {{param = “01”, “02"}};

(local) code blocks: #---(param) o1l
Condition global JSON: constraints: { ... };
definition local: @if
Execution Text editor or IDE, command-line and

environments language specific environment

Debugging
utilities

Outputs messages, warnings and errors
from each script to command line

Prints table of partial decision tree;
outputs CSV of decision tree on
compilation

Overview of
decision tree

R and dedicated code chunks in

Traceback objects for each universe
where errors were encountered

expand( ) creates a table of full
decision tree which can be viewed
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4.2 Summary of Evaluation Using Cognitive
Dimensions of Notation

We draw on existing evaluative frameworks in HCI to compare the
design of multiverse, Boba, and mverse programming interfaces.®
The cognitive dimensions of notations [6, 24, 32] break down repre-
sentational systems (e.g., programming libraries) into orthogonal
considerations about how well they support user reasoning; and
the gulfs of execution and evaluation [28, 44] address mismatches
between a user’s mental model and the system’s affordances for ex-
pressing a user’s intended analysis. Since our focus is on designing
notations to support reasoning about and constructing multiverses,
we concentrate our analysis on the API and environments for these
tools. Three of the authors each independently evaluated the usabil-
ity of the tools they were most familiar with. This qualitative coding
involved systematically going through the cognitive dimensions
of notations and noting anything relevant about a particular tool.
The authors then met to discuss, compare, and synthesise notes.
We report on our main findings below.

Progressive evaluation (how the user checks work in progress) and
Provisionality (level of premature commitment to actions): Check-
ing work in progress in a multiverse analysis involves executing
analysis code, and the way that users do this is restricted by their
computing environment. In multiverse and mverse, users can
build up an analysis by adding decision points in a computational
notebook and execute provisional parts of a data analysis which
updates variables and data structures in the RStudio session. This
supports iterative workflows [31, 32] (D1). In contrast, Boba re-
quires users to author their analysis in a template file, then compile
and execute from the command line. Evaluating work in progress
requires the user to open a new session and run scripts representing

®We initially intended to include rdfanalysis [22] for this discussion, but our implemen-
tation and evaluation revealed that most of the issues with this library stem from the
rigid, heavily templated coding style that it imposes on the user; hence we excluded it
from our analysis.

multiverse mverse

Language-specific

I Tidyverse-style R API

*_branch(),
branch() addn BanchC)
%when% branch_condition(),

add_branch_condition()

RMarkdown R or RMarkdown

Traceback objects for each universe
where errors were encountered

summary( ) creates a table of full
decision tree which can be viewed

in RStudio in RStudio

Table 2: An outline of the the design choices that each tool makes. Note that, as mverse is an extension of multiverse, there

is overlap of certain design features.
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individual universes, making it cuambersome to check provisional
parts of code during the authoring process.

Consistency (similarity of syntactic representations for semantically
similar operations) and Closeness of mapping (how well notations
represent the application domain). Both multiverse and Boba con-
ceptualise multiverse construction as consisting of two steps—a
multiplexing step to declare alternatives, and a pruning step to de-
clare incompatible combinations of analyses. multiverse provides
a single core operator for each (branch and %when%), and its syntax
stays close to existing syntax and conventions in base R. In Boba,
the multiplexing step can be represented using two syntactic forms,
JSON and code blocks (see §4.1.2); termination of a code block re-
quires the user to declare an additional code block; and there is
no support for the reuse of parameters for conceptually similar
decisions. These raise potential issues of syntax consistency. Boba’s
syntax aims to represent decision spaces more broadly, regardless
of programming language or execution environment and thus pre-
serves closeness of mapping to the decision tree itself, which is
expressed using a JSON structure. mverse conceptualises multiverse
construction through analogs of familiar tidyverse and R functions,
therefore preserving consistency with analogous functions.

Error proneness (invitations for users to make mistakes or lack of
protection against mistakes) and Hard mental operations (level
of cognitive load): Error proneness in each tool reflects unintended
consequences of design choices that are otherwise well-motivated.
The %when% syntax in multiverse impacts every instance of a
given analysis option in a multiverse specification, not just code
in the apparent scope of the condition; this may not be intuitive
to all users. mverse users interact with wrapper functions (§ 4.1.1);
while this makes the syntax less flexible and expressive, it should
reduce error proneness because the operation of each function are
specialised. Boba requires the user to write their template code
in one editor but evaluates universe scripts in separate R environ-
ments, which requires the user to switch between different editing
and execution environments—text editor, command line and R or
RStudio IDE. This can involve greater cognitive load and create
opportunities for errors.

Gulf of execution (how difficult it is to express intended operations
with a tool): In multiverse, the branch operator allows users to
replace any sub-expression in R to declare alternative analyses,
but users have to determine how to multiplex over every type of
operation they wish to employ. Similar challenges may be encoun-
tered in Boba, which uses text-substitution. mverse is limited by
the existence of analogous functions for the task the user wishes to
perform.

Gulf of evaluation (difficulty interpreting whether a tool is behav-
ing as a user intends): Gulfs of evaluation arise when debugging or
validating that a multiverse worked as intended. We expect a larger
gulf of evaluation when this process is significantly different from
the standard workflow of debugging individual paths. multiverse
generates a tree structure of nested R environments which share
their scope insofar as different universes share analysis code, a
design choice meant to reduce runtime by eliminating redundant
computations. This is different from usual program execution in
R and thus different from the mental model of running code that
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an R user might have. Because of this execution process, debug-
ging can be difficult. In contrast, Boba creates different execution
environments for each individual universe script, executes them,
and collates console logs and outputs the data from each universe.
This involves processes that might be more familiar to a typical R
user. As a consequence, errors are easier to reproduce by running
universe scripts in an R session, making it easier to assess whether
the implementation matches one’s intention.

5 CASE STUDIES WITH RESEARCHERS

The multiverse library has been available for researchers to down-
load from the CRAN R repository’ for about a year. Several re-
searchers discovered the library and used it to implement multiverse
analyses. We report on case studies from three such researchers
who have successfully implemented a multiverse-style analysis
with the library, who we recruited for an interview. Each of them
had different goals for implementing a multiverse analysis, and
we describe what they consider a successful implementation based
on the goals of their project. The case studies allowed us to gain
insights into how the library is used in the real-world in varied
scenarios, testing the breadth of the functionality of the APL

We conducted semi-structured interviews® over Zoom. We asked
participants to first walk us through their multiverse implementa-
tion and observed how they had implemented their analysis. Based
on our observations and our interview protocol, we asked them
follow-up questions regarding the analysis. Interviewees were com-
pensated $50 USD for a session of approximately 1 hour. Below
we describe insights on participants experience and usage of the
library.

5.1 Case Study: Creating a template for
multiverse analyses

P1isa graduate student in Psychology who has 5 years of experience
with R, and is involved in a large-scale crowd-sourced replication
project in psychological science, where they conduct multiverse
analysis on over 70 open datasets. As the individual multiverse anal-
yses were to be implemented by different teams of researchers, P1’s
goal was to develop an R code template which would be adapted
by the other teams of researchers to implement multiverse anal-
yses of their own on different datasets. P1 first identified various
types of researcher degrees of freedom that are typical of psychology
analyses, ordered and grouped them into categories (e.g. data trans-
formations, outlier exclusion, etc), and compiled these decisions
into a spreadsheet that acts as a framework for identifying and
documenting analysis parameters and options. P1 then developed
the R code template, which involved using the multiverse library
to implement an example multiverse analysis.

P1 used the spreadsheet to create a conceptual outline of the mul-
tiverse analysis and identify all the analysis parameters and options.
Prior to implementation, to familiarise themselves with the library,
P1 copied code from the documentation and modified the examples
for their data analysis. They then translated this conceptual analy-
sis into R. They implemented the multiverse analysis in an R Script.
It consisted of around 1200 distinct analysis paths. P1 stated that

https://cran.r-project.org/web/packages/
8see Supplementary Material for the interview guide
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they found the library easy-to-use and that it was straightforward
to translate their conceptual decisions into multiverse syntax.
They developed a mental model for the branch function— ‘T always
thought in terms of loops; whenever I declared a branch statement, I
thought of it as the multiverse package creating a loop™.

While P1 was able to implement their intended analysis and
develop a reusable template, they encountered certain challenges,
specifically in implementing procedural dependencies—they found
the Boolean statement declared with %when% difficult to evaluate
(hard mental operations), which in turn made it difficult to deter-
mine which combinations of analysis options were being rendered
mutually incompatible. P1 also mentioned facing challenges in de-
bugging and identifying the source of errors in their code (gulf of
evaluation) due to the overwhelming number of error messages
spouted by the library (§3.4). They adopted a custom workflow
where they progressively added branches; if they encountered an
error after a new branch was introduced, they copied a single anal-
ysis into a separate R script file and executed it to debug. Because
P1 used an older version of the library, after the session we corre-
sponded with them over email to get their feedback on the error
messages they would have seen had they used the current version.
They indicated that the error messages in the newer version of
multiverse were more informative.

5.2 Case Study: Medical multiverse analysis

P2, a graduate student, first started using R six years ago but has
used it more intensively in the last three years. P2 recently com-
pleted a study investigating the association between different levels
of alcohol consumption and inflammation using a multiverse-style
analysis. P2’s analysis was motivated by mixed findings on the
effects of different levels of alcohol consumption on inflammation,
when compared to an abstinence reference group. Through the
multiverse analysis, they found the association between low-to-
moderate drinking and lower levels of inflammation marker to
be robust to common variations in researcher-defined parameters,
while the association between above-guidelines drinking and in-
flammation marker levels was less definitive.

P2 surveyed previous literature on the same research question
for the different analyses that have been performed and created a
table detailing the various degrees of freedom. Like P1, P2 also used
multiverse’s documentation to get familiarised with the library.
They then implemented their analysis in RMarkdown, adding anal-
ysis parameters where relevant. Their multiverse analysis consisted
of approximately 1000 unique analysis paths, and was comprised
of relatively simple types of analysis options, such as data process-
ing, outlier removal, and modeling, which are fairly straightfor-
ward to define and are supported through many examples in the
multiverse documentation. P2 considered including latent vari-
able regression; however, they felt that such an analysis would be,
in and of itself, complicated to define for a singular analysis. Thus,
they omitted this analysis from their multiverse. We speculate that
this might be an issue of cognitive load—a latent variable regression
and multiverse analysis are both, independently, complex analy-
ses and require hard mental operations; as such, P2 may have felt
that including a latent variable regression within their multiverse
analysis will compound implementation difficulty.
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P2 experienced some challenges in defining analysis options for
model formulas with different combinations of predictors (gulf
of execution). As a workaround, they created strings for different
groups of predictors. Then, inside a branch statement, P2 used
text concatenation to combine those strings into the regression
model formulas corresponding to each analysis option’. This is a
complicated approach (hard mental operations) where the user first
declares text and then constructs combinations of text, which are
then parsed into R code. This is a consequence of the multiverse
APT’s design, which substitutes parts of the abstract syntax tree
with arbitrary sub-expressions—a conscious design choice to make
multiverse syntax similar to R syntax (D5). Alternatively, a user
could implement this without having to perform text concatena-
tions, though this would require familiarity with the somewhat
more complex metaprograming functionalities in R, such as quota-
tion and quasi-quotation [60].

5.3 Case Study: Extremely large multiverse
analysis in Virtual Reality

P3, a computer science graduate student, was an experienced R
programmer having previously developed R libraries. P3 conducted
a multiverse analysis to determine patterns in researcher degrees
of freedom in how virtual reality users’ motion is operationalised.
A VR user’s motion is determined based on 18 degrees of freedom
from the position and orientation of VR headset and hand con-
trollers. Through a multiverse analysis, they found that differences
in measures of synchrony'® were primarily due to how motion
was defined (speed or velocity), transformation of variables (rank
transform, log transform, or no transform) and the choice of the
tracked point (head or hands). The analysis found that estimates of
synchrony are sensitive to certain operationalisations, and surfaced
the need for pre-registration of how users’ motion will be defined.
Like the others, P3 identified degrees of freedom primarily from
prior work, which they mapped out on a whiteboard. The resultant
multiverse was comprised of two million distinct analysis paths.

P3 used R Scripts and described finding the task of translating
a conceptual decision to code with the library straightforward.
P3’s description of their implementation process was similar to
the iterative workflow of data science workers. However, since
they used R Scripts, they created a custom workflow where each
conceptual decision was implemented in a separate script file and
was tracked through a custom naming convention. Once they had
implemented a few branches, they felt confident in creating a single
primary script.

P3’s analysis was the most complex among our case studies. P3
needed to implement a nested decision which would have required
a branch call within another branch call; or they would have to
combine two decisions into a single analysis parameter which might
cause issues downstream in their analysis. Instead, P3 used the
multiverse API in a novel way—they combined two features of
the API to create a new usage pattern that we had not explicitly
designed—P3 created a parameter which has no code associated
with it, and whose sole purpose was to specify the subsequent

9see Supplementary Material for a detailed example of this implementation
OSynchrony refers to individuals’ temporal coordination during social interactions.
(17]
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procedural dependency. This allowed P3 to succinctly specify the
nested decision space:

branch(px_point_count, "one", "many")
px_datai.5 <- px_data %>%
mutate(across(branch(px_body_parts,

"all" ~ <...> %when% (px_point_count == "many"),
"head" ~ <...> %when% (px_point_count == "one"),
...<other options>...

), .fn = ... )

P3 liked the syntax for short declaration of analysis options, but
since they had analysis options spanning 4-5 lines of code within
some branch statements, they felt that the syntax got a bit messy
in some cases. Finally, P3 experienced challenges in debugging and
identifying errors, which was exacerbated by the extremely large
multiverse they had defined. They found that certain debugging
utilities in R, such as the stepwise debugger (browser) were not
compatible with the multiverse AP, and thus resorted to using
print statements for debugging.

5.4 Summary of Findings from Case Studies

The case studies revealed that all three researchers were able to
implement their desired multiverse analysis with the help of the API,
found the multiverse library to be helpful to do so, enabling novel
insights. The diversity of the projects and goals, and the range of
backgrounds and programming expertise of the researchers, suggest
that, overall, multiverse can support a wide range of analyses in a
usable manner. Below we report on insights pertaining to planning
analyses, learning curve, expressivity of the library, as well as
opportunities for future developments.

We noticed that researchers engaged in extensive pre-planning
before implementing their multiverse analysis, and degrees of free-
dom were primarily identified from prior work (planning). This
may mean that, unlike typical data analysis workflows, researchers
are less likely to brainstorm alternative analysis paths whilst im-
plementing a multiverse analysis. However, researchers may still
engage in an iterative workflow to refine and modify their code. To
implement the conceptual multiverse using the API, researchers
would start with the documentation that is provided with the li-
brary, and iterate on it until they were able to specify their desired
analysis (learning). All researchers stated that translating the con-
ceptual decisions to multiverse syntax was generally straightfor-
ward (expressivity). However, there were certain niche aspects of
the API, such as the ability to reuse parameters (§3.2.4) which at
least one user did not discover (learning), and developed custom
workarounds to resolve (P3).

Interestingly, only P2 used RMarkdown notebooks for their mul-
tiverse analysis. P1 never uses RMarkdown, and P3 does use it but
did not think it suited their analysis due to the size of the analysis.
When they had to iterate on the specification or debug their code,
P1 and P3 both adopted custom workflows, with P1’s workflow be-
ing similar to our anticipated workflow using RMarkdown. Because
P1 and P3 used R Scripts, they had limited support for progressive
evaluation of their specified analysis. P2, on the other hand, used
RMarkdown and multiverse code chunks for their analysis, and
did not experience significant issues with debugging. This suggests
a need to support progressive evaluation and provisionality for R
Script users, which we discuss further in §6.2.
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Our case studies also revealed how users may approach debug-
ging when they encounter errors. We found that debugging utilities
in R (e.g. the stepwise debugger browser()), did not interface well
with multiverse (P3). This reveals an important opportunity for
improvement. Additionally, P1’s difficulties in declaring procedural
dependencies with multiverse suggests a need to modify the syn-
tax for declaring procedural dependencies to better reflect users’
mental models. In addition, since a lot of procedural dependency
declaration is not limited to the immediate scope but the entire
specification, visualisations of the tree structure highlighting the
pruned analyses may also make it easier for the user to reason
about their declaration.

Finally, both P2 and P3 cited a need for further normative guide-
lines for multiverse analysis. P2 mentioned that most examples of
visualising the results of a multiverse analysis, such as specifica-
tion curves, are restricted to a single outcome of interest. However,
it is not unreasonable to have an analysis where the researcher
wishes to convey multiple parameters of interest. P3 was faced with
the challenge of sense-making from an extremely large multiverse,
which is computationally expensive, and wondered if there are ap-
propriate sampling methods to identify which analysis parameters
are relevant and which are not.

6 DISCUSSION

Our qualitative analysis of the design space for multiverse analy-
sis programming interfaces reveals trade-offs in API design, and
gaps in the design space where tools for debugging and conceptual
reasoning about decisions have been underexplored. We point to
opportunities and challenges to balance trade-offs in multiverse
programming interface design, provide tools for debugging multi-
verse analyses, and help users reason conceptually about decision
spaces.

6.1 Learnability versus Flexibility of APIs

There is a trade-off between the targeted and constrained multi-
plexing functions offered by mverse compared to more sweeping
and flexible approaches that allow users to multiplex arbitrary code,
as supported by multiverse and Boba. Imagine a data analyst that
wishes to create a parameter representing different exclusion cri-
teria: with mverse, the semantics of the verb map very closely to
a single function, filter_branch. An analyst is likely to recog-
nise this mapping and the difficulty is largely in determining the
specific syntax of that function. In multiverse or Boba, an ana-
lyst must understand, in more depth, the semantics of separate
operations—filter, an R function, and branch, a construct from
the multiverse programming interface—to determine how to com-
bine them to achieve the same result, as well as determining the
valid syntax for that combination.

As mverse functions are analogs to existing API functions, it is
likely to be easier for a user to develop mental models to perform
these actions, but necessitates the existence of an analogous func-
tion in mverse for every task that the user might wish to perform,
limiting expressiveness. Meanwhile, the design approach of tools
like multiverse, which provides users with a universal statement
to perform multiplexing (branch), might create a gulf of execution
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(§4.2). This problem is representatative of a core consideration in ef-
fective API design: what are the atomic units of an API, how do they
recombine in larger conceptual units—high-level, abstract opera-
tions the user wishes to accomplish, such as filter a dataframe based
on a parameter—and can users easily construct such combinations?

We are reminded of the large variation in visualisation APIs,
from APIs that include pre-baked chart types like bar charts and
pie charts, making them easier for a novice to pick up to APIs with
coherent grammars for visualisation specification [50, 58], elegant
APIs with more general concepts of visual channels and geometries,
which can be recombined into more complex charts—if the user is
able to determine how to do so. Just like in other areas, there is likely
no one multiverse API to rule them all; rather, a spectrum of API
designs will be necessary to address different user groups’ needs,
carefully balancing flexibility and learnability. What these APIs
should look like should be motivated both by formal elegance—we
believe something like the branch statement is a good candidate for
an atomic operation in more general multiverse authoring tools—
but also empirical work on how people understand and construct
multiverses.

Our case studies revealed that researchers are able to familiarise
themselves with the syntax of multiverse, using the documenta-
tion as a reference. Following this initial learning phase, researchers
seem able to use branch as an atomic unit to construct a complete
multiverse analysis, as exhibited by three successful implemen-
tations, of which one consisted of over a million universes. P3’s
innovative usage pattern of branch to declare a nested decision
lends further evidence that branch as an atomic operator can sup-
port flexible and expressive construction of multiverse analyses.

6.2 Diagnosing and Fixing Errors

The design of multiverse was based on the assumption that data
analysts engage in an iterative workflow, and they predominantly
use literate programming environments like computational note-
books for such iteration. However, our case studies revealed that
users who prefer traditional scripting environments also engage in
similarly iterative workflows, and have custom workarounds for
the limitations of a scripting environment. To best support such
iterative workflows in R Scripts, users should be able to declare
provisional code and progressively evaluate their specified code, both
of which would bring the usability of the multiverse API in R
Scripts closer to the experience of users in RMarkdown. Currently,
in R Scripts, users have to run the entire code specified within an
inside function; adding functionality to allow users to execute
parts of their multiverse analysis in the console without the inside
wrapper could address the issue to an extent. In addition, improving
debugging utilities that multiverse tools provide could be another
way of supporting users.

However, a primary design challenge for debugging utilities
in multiverse analysis is how to give the user detailed feedback
without overwhelming them with information. Due to the combi-
natorial explosion of analysis paths in multiverse analysis, listing
error messages for all analyses at once is not optimal; yet this is
exactly what existing tools do. Boba provides the user command
line output, including all messages, warnings, and errors encoun-
tered during execution along with the index of the corresponding
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universe. In multiverse, we provide tracebacks for each error
encountered, which gives the user more relevant information for
diagnosing errors. However, the resulting wall of error messages
can still overwhelm the user (for e.g., P1 in our case study).

A more usable debugging tool might act like a traditional step-
wise debugger, helping analysts quickly identify the exact analysis
path and location where their code failed, as well as load variables
from the relevant analysis path into the current environment in
the user’s IDE. In a notebook environment, the ideal debugger may
even load in a full notebook environment and allow the user to
probe and execute code chunks directly. This would enable the
user to immediately begin probing for the reason why their code
failed without having to manually navigate to and re-execute the
analysis path that produced an error. It would also bring the output
of error messages in line with the way that users debug these errors:
one-at-a-time.

Realtime visualisation of the structure of the multiverse could
aid in debugging as well. A visualisation that continuously up-
dates as the analyst creates branches might reveal hidden depen-
dencies before the analyst even executes the multiverse. Such an
approach could prevent errors before they occur, rather than requir-
ing analysts to discover hidden dependencies through debugging
tasks, which are cognitively demanding even in traditional (non-
multiverse) programming. Interactive overview visualisations of
the decision tree could also be used when executing the multiverse,
showing where errors and warnings are occurring in which analysis
paths in realtime. This might enable the user to investigate errors
or prune the decision tree mid-execution. This would spare the user
time waiting for universes where models are struggling/failing to
converge. A persistent visualisation of the decision tree could also
be an interface to the environments for each universe, such that
by clicking a particular leaf node the user could be dropped into a
particular universe. We imagine these visualisation tools as fully
integrated with a notebook authoring environment like RStudio,
rather than separate tools that require analysts to adopt completely
new workflows.

6.3 Dealing with Large Multiverses

A cause for concern while implementing multiverse-style methods
is the possibility that an analysis requires a very large multiverse,
with thousands or even millions of distinct specifications. In such
scenarios, researchers must apply care to ensure that, for each deci-
sion, every alternative option is equally reasonable and justifiable,
and the decision to choose between them is entirely “arbitrary”
[55]. If a multiverse specification includes options which are “un-
ambiguously inferior”, the analyst risks “drowning out reasonable
effects in a sea of unjustified alternatives” [16]. Thus, if theory or
relevant background knowledge provides sufficient indication that
an option is inferior to the other options, then the corresponding
specifications should be removed from the multiverse analysis. Del
Guidice and Gangestad [16] illustrate how two multiverses, a large
one where some specifications may be inferior and a smaller one
where all specifications are equally justifiable, can lead to different
conclusions. In the larger multiverse, the analysis revealed a wide
range of both positive and negative effect sizes, which may lead one
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to interpret the effect of interest as not robust. In the smaller multi-
verse, the results indicate two clusters of effects, due to uncertainty
around the causal nature of the effects being studied. This example
highlights the need for analysts to not approach multiverse analysis
as a specification maximising problem, but instead place emphasis
on ensuring that all specifications are equally justifiable.

Unfortunately, by providing syntax to specify decision spaces
and operationalising the multiverse as a cross-product of decision
options, existing tools (including multiverse) may promote mul-
tiverses which are probably too large and which contain unreliable
estimates. However, certain features of existing tools also hold
promise for pruning out analysis options that are non-equivalent in
principle a priori. This requires the user to recognise during the spec-
ification process that specific analysis options do not make sense to
include, either because they are less justifiable than alternatives or
because they change the meaning of the final result [16]. rdfanalysis
[22] elicits the rationale behind decision options by requiring users
to document their choices. This kind of elicitation might integrate
better with existing literate programming workflows [35], for ex-
ample, by using prompts inside of template notebooks to scaffold
the user’s reasoning [61]. Boba’s web-based Visualiser enables the
user to perform exploratory data analysis on multiverse results,
providing specialised views for evaluating model fit, inferential
uncertainty, and robustness of results to analysis decisions [37].
Although these visualisations do an excellent job of revealing which
analysis paths are non-equivalent in principle, ideally users should
do as much pruning of the decision space as possible during the
specification process. Future work could explore ways of integrat-
ing visualisations like those in Boba for checking model fit into
a computational notebook environment where these tools could
be used to evaluate and iterate on provisional analysis options in
context.

However, it is entirely possible that despite considering only
equally reasonable specifications, one ends up with a multiverse
analysis with millions of distinct, equally justifiable analysis paths
(for example, P3). For such large multiverses, keeping track of the
declared specifications, and making sense of the entire analysis
can be challenging as existing tools provide limited support for
these tasks. While visualisations such as specification curves can
aid in sense-making to a certain degree, there is a potential for
dedicated interactive visualisation interfaces to assist the analyst
in such tasks [25]. We hope to address this in future work.

Moreover, running each of these analysis paths may be extremely
computationally expensive. A potential solution to get around the
problem of analysing very large multiverses may be to sample a
subset of the declared specifications in a principled manner, analyse
and interpret them. However, applied researchers currently lack
guidance and formal theory on how to effectively sample from
the large space of distinct analyses. This points to a broader issue
that researchers face—as multiverse analyses grow more popular,
there needs to be greater support on how to implement and in-
terpret results from a multiverse in a principled manner, akin to
developments in Bayesian model development [21, 51].
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6.4 Lowering Barriers for Transparent
Statistical Reporting

multiverse is designed specifically to work within the RMark-
down authoring environment in RStudio. This decision allows the
tool to make use of and extend the report authoring utilities pro-
vided by these platforms, getting us closer to realising the idea of
exploratory multiverse analysis reports [20]: self-contained, interac-
tive papers that allow readers to interactively explore the results of
a multiverse analysis. Our work does not attempt to address larger
incentives among researchers to publish strong results, which may
also impact researchers’ use of approaches like multiverse analysis.
However, if the difficulties authors currently face specifying or com-
municating a multiverse analysis within their typical workflows
play a role in discouraging more robust analysis. Our work, along
with recent work in communicating multiverse analyses [20, 25],
stand to contribute to the solution.

7 CONCLUSION

We contribute multiverse, a programming interface for multi-
verse analysis in R, which integrates with the RStudio IDE and
RMarkdown documents to support a computational notebook work-
flow. Whereas previous tools for multiverse analysis [22, 37] only
support script-style programming, multiverse enables a more it-
erative and interactive authoring experience consistent with the
practices of data science workers [31, 32]. multiverse fills a gap
in the rapidly evolving design space for multiverse programming
interfaces by providing a consistent fundamental operation, branch,
that is flexible enough to express any multiverse. We also contribute
an evaluation of programming interfaces supporting multive rse
analysis in R—multiverse, Boba [37], and mverse (an extension of
multiverse)—where we identify trade-offs in design choices across
the gamut of programming interfaces. We present opportunities
and challenges for balancing trade-offs in API design and provid-
ing tools for debugging, authoring, and communicating multiverse
analysis.
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