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Abstract. Research and development in computer science and statistics have produced
increasingly sophisticated software interfaces for interactive and exploratory analysis, op-
timized for easy pattern finding and data exposure. But design philosophies that em-
phasize exploration over other phases of analysis risk confusing a need for flexibility with
a conclusion that exploratory visual analysis is inherently “model free” and cannot be
formalized. We describe how without a grounding in theories of human statistical infer-
ence, research in exploratory visual analysis can lead to contradictory interface objectives
and representations of uncertainty that can discourage users from drawing valid infer-
ences. We discuss how the concept of a model check in a Bayesian statistical framework
unites exploratory and confirmatory analysis, and how this understanding relates to other
proposed theories of graphical inference. Viewing interactive analysis as driven by model
checks suggests new directions for software and empirical research around exploratory and
visual analysis. For example, systems might enable specifying and explicitly comparing
data to null and other reference distributions and better representations of uncertainty.
Implications of Bayesian and other theories of graphical inference can be tested against
outcomes of interactive analysis by people to drive theory development.
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Media Summary

Novel interactive graphical user interface tools for exploratory visual data analysis provide ana-
lysts with impressive flexibility in how to look at and interact with data. Often these systems are
designed to make patterns in data as easy to see as possible. However, there are risks to prioritizing
easy finding of patterns alone as a criteria of good interface design. One risk is that the techniques
used to emphasize patterns, like aggregating data by default, cause analysts to overlook variation
and uncertainty in their data, so that they draw conclusions that aren’t well supported by the data.
Another is that some analysts may fail to recognize the importance of doing more careful statistical
modeling to investigate how reliable insights they arrive at through visual search seem to be. One
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reason that graphical user interface systems for interactive analysis may not be designed to enforce
strong connections between exploratory and confirmatory statistical analysis is because there aren’t
well-established theories of how these two types of activities are related. We propose a perspective
that unites exploratory and confirmatory analysis through the idea of graphs as model checks in
a Bayesian statistical framework, and describe how in light of this view, systems for exploratory
visual analysis should be designed to better support model-driven inference and representation of
uncertainty.
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1. What is the role of data visualization in hypothesis-driven analysis?

“Nothing—not the careful logic of mathematics, not statistical models and theories, not the
awesome arithmetic power of modern computers—nothing can substitute here for the flexibility of
the informed human mind,” wrote Tukey and Wilk (1966) half a century ago. Since then, research
areas like information visualization and interactive analytics have become thriving subfields of
computer science, motivated by an assumption that interactive visual interfaces for querying data
enable humans to combine their domain knowledge with data summaries to produce insight. This
has led to the development of interactive interfaces to help analysts more easily conduct ad hoc
data exploration and analysis, from programmatic environments like computational notebooks, to
modern business intelligence tools that create dashboards or trellis plots without the user needing to
manually specify encodings, to visualization recommenders that serve up data summaries optimized
for perception and exposure of patterns.

While notebooks created with RStudio, Jupyter, and similar packages are based in program-
ming languages that offer considerable flexibility in terms of graphical and statistical functions,
interactive graphical user interfaces for data analysis provide a more constrained environment, in
which tabular data can be plotted and explored at the click of a button or dragging action of a
variable. Among systems specializing in visualization interfaces to data analysis, Tableau Soft-
ware (Tableau Software, 2021c) is perhaps best known for its focus on visualization-based data
exploration and reporting. Tableau’s interface is powered by combining principles from the gram-
mar of graphics (Wilkinson, 2012) with a back-end table algebra that translates user interactions to
visualization specifications associated with relational database queries (Stolte et al., 2002). Other
systems (Microsoft PowerBI (Microsoft, 2021), Oracle Analytics (Oracle, 2021), SAS JMP (SAS,
2021), DataDesk (Data Descscription, Inc., 2021), etc.) similarly advertise the power of visual
analysis and offer their own versions of visualization-based front-ends for data exploration. These
tools can vary in how much support they provide for different stages of analysis. A few systems,
such as DataDesk (Figure 1a) and JMP, provide graphical tools like brushing and linking as well
as a suite of modeling tools to support canonical statistical models like regressions and hypothesis
tests. Many other popular systems, such as Tableau Desktop (Figure 1b) and Power BI, which are
commonly adopted as visual analysis and reporting tools in applications like business intelligence,
offer relatively little support for modeling and statistical testing. These differences imply a ques-
tion: What is the right amount of integration of statistical modeling functionality in a graphical
user interface tool for exploratory analysis?

If we look to research on state-of-the-art graphical user interface tools for exploratory and visual
analysis, researchers often motivate their work in ways that imply that the value of the interface is
to get out of the way of the data, so the human analyst can find the patterns or “insights” they hold.
This view implies that advanced statistical modeling support is not a critical feature of a good visual
analysis tool. Instead, tools are intended to create a responsive environment where queries are met
at the “speed of human thought” (Heer & Shneiderman, 2012) and implement forms of “behavior
optimization” (Rahman et al., 2020), from visualization recommendations (Vartak et al., 2017;
Vartak et al., 2015; Wongsuphasawat et al., 2015) (Figure 1c) to natural language interaction (Gao
et al., 2015; Setlur et al., 2016; Srinivasan & Stasko, 2017) to big data optimizations (Moritz et al.,
2017). These innovations aim to support more flexible inputs by which users can query and analyze
data and to efficiently summarize data despite the scalability problems that arise as datasets grow
larger.

One possible presumption behind prioritizing data exposure in building these tools is that ex-
ploratory and confirmatory stages of an analysis workflow are easily distinguished. Some accounts
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Figure 1. Three examples of GUI tools supporting exploratory visual analysis. a) DataDesk
provides point-and-click visualization generation as well as easy access to statistical modeling
functions like regression and associated diagnostic plots. b) In Tableau, dragging variables
of interest to “shelves” above the plotting area results in a recommended visualization given
principles of effective visualization design and a powerful table algebra (Stolte et al., 2002).
c) Voyager2 builds on the Tableau drag-and-drop approach by enabling easy exploration of
many related views given selected data variables (Wongsuphasawat et al., 2017).

of how knowledge is created during data analysis would seem to imply that so-called exploratory
analysis is “model free” and consists of preparing and familiarizing oneself with data, searching for
useful representations or transformations, and noting interesting observations Sacha et al., 2014.
Confirmatory analysis, on the other hand, involves verifying that data support a hypothesis (Keim
et al., 2008; Pirolli & Card, 2005; Sacha et al., 2014; Thomas & Cook, 2005). Statisticians and
others have long warned that a failure to distinguish exploratory and confirmatory stages can lead
to “naive empiricism run amok” (MacDonald et al., 1983), referring to pseudo-scientific use of
data to confirm existing beliefs or identify patterns that do not betray underlying regularities in
the target phenomena. Inappropriate overlap between exploratory and confirmatory analysis has
even been proposed as a contributing factor to failed attempts to replicate what were believed to
be high quality experiments in psychology and other fields, also known as the “replication crisis”
(e.g., (Nosek et al., 2018; Wagenmakers et al., 2012)). The dangers of too much overlap between
EDA and CDA have more recently been the premise of work in computer science that pursues
algorithms and interfaces for mitigating the symptoms of too much flexibility (Pu & Kay, 2018;
Wall et al., 2017; Zgraggen et al., 2018; Z. Zhao et al., 2017), such as by tracking and adjusting for
visual comparisons that an analyst makes (Zgraggen et al., 2018; Z. Zhao et al., 2017).

In practice, however, it can be difficult to draw a clear line between exploratory and confirmatory
data analysis. Model-driven inference plays a role even in canonically exploratory activities; after
all, what is surprising is defined by the implicit or explicit model of our expectations. With the help
of our visual system, we engage in processes comparable to fitting implicit models to data when
we examine visualizations for distribution and trend, and we judge fit when we notice outliers and
other deviations from symmetries inherent in graphical forms like histograms or scatterplots. We
build up faceted displays like trellis plots to look for more complex effects and possible interactions
in data. Conversely, we use graphs to assess residual deviation from models we explicitly specify and
fit on data. Figure 2 depicts plots of real estate data that an agent might generate using Tableau
in order to guide their strategy in choosing homes to represent, by getting a sense of distributional
features and checking for a main effect of neighborhood in one part of a city (a), investigating the
strength of relationships between living area, number of above-ground bedrooms, and sale price
(b), explicitly checking residuals from a linear model that predicts sale price from living area and
number of above-ground bedrooms (c), and checking for variance in the effect of lot configuration
on sale price across neighborhoods (d).

In this article we consider how assumptions about the analysis process and specifically the dis-
tinction between EDA and CDA may be reflected in interactive systems for exploratory visual
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Figure 2. Plots of real estate data from Ames, Iowa (De Cock, 2011), created in Tableau
Software (Tableau Software, 2021c). (a) Trellis plot of housing sale prices by neighborhood
might invoke comparisons to a normal or log-normal distribution, and enables a visual check
for a main effect of neighborhood. (b) Scatterplot of housing sale prices by square feet
of above ground living area, with number of bedrooms above ground mapped to sequential
color might invoke comparisons to a diagonal line representing a perfect positive correlation.
(c) Residuals from multiple linear regression of sale price by above ground living area and
bedrooms implied in plot b. (d) Trellis plot of sale price by lot configuration and neighborhood
enables, among other effects, a visual check for an interaction between lot configuration and
neighborhood.

analysis. We propose that designing software to strengthen, rather than separate, the links be-
tween purely exploratory and model-driven analysis can lead to better analysis. We argue that this
bridging necessitates engaging with theories aimed at describing human statistical inference during
graphical analysis. without an underlying theoretical basis to ground how exploratory activities
feed the development of theories and models, computer scientists and statisticians can easily end up
designing software that encourages only vague theories about how data were generated and conflicts
with real world analysis stakes and goals. While our article is conceptual in nature, our arguments
are backed by a growing amount of empirical research in the areas of interactive and exploratory
analysis and uncertainty visualization.

The article is organized as follows: We first consider the origins of interactive data analysis,
and how they might have led to a fixation in system design on exposure, the “laying open of the
data to display the unanticipated” (Tukey & Wilk, 1966). We describe how examples of negative
implications of data exposure in recent research can be linked to an idea of “rough CDA” as a
frequent activity in analysis. We describe how conceiving of exploratory analysis activities as
driven by model checks in a Bayesian framework provides a generalizable framework for developing
interactive analysis tools to support multiple proposed stages of exploratory data analysis. We
note how this view compares to several other recent approaches to formalizing the role of statistical
graphics in inference, including graphical inference as Bayesian cognition (Y. S. Kim et al., 2021;
Y. S. Kim et al., 2019) and statistical hypothesis testing (Buja et al., 2009; Wickham et al., 2010).
We discuss design implications of adopting a Bayesian model check formulation for interactive
analysis software, and address related risks and open questions, including cognitive load implications
and fundamental questions about what types of statistical problems visual analysis can address. We
recommend ways in which interface features might better support analysts in specifying and testing
implications of their implicit statistical models, from data diagnostics phases to rough confirmatory
analysis. Finally, we discuss how attempting to fully automate a human-like analysis workflow
might stimulate insights about how to improve interactive analysis interfaces.
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2. Background: Exploratory and interactive data analysis

2.1. Tukey on exploratory data analysis. It may seem quite obvious that if you are doing
data analysis, the interface you use should above all prioritize representation and easy access to the
data. This way of thinking owes much of its motivation to the exploratory data analysis movement
pioneered by John Tukey in the 1960’s. Tukey (1962) popularized the idea of exploratory data
analysis (EDA) as a natural complement to confirmatory data analysis (CDA), writing: “The
simple graph has brought more information to the data analyst’s mind than any other device. It
specializes in providing indications of unexpected phenomena.”

The proposal of EDA is memorable in part because he directly addressed a tension between
the flexibility in thinking required to learn from one’s data through construction of graphics and
transformations and the supposed guarantees of confirmatory approaches. For instance, Tukey and
Wilk (1966) wrote: “Formal statistics has given almost no guidance to exposure; indeed, it is not
clear how the informality and flexibility appropriate to the exploratory character of exposure can
be fitted into any of the structures of formal statistics so far proposed” and accused the formal
inquiries into properties of confirmatory methods he saw around him as a means of “legitimizing
variation by confining it by assumption to random sampling” and “restoring the appearance of
security by emphasizing narrowly optimized techniques and claiming to make statements with
‘known’ probabilities of error.” Tukey’s classic text on EDA distinguishes it as a separate stage of
analysis from CDA, and much of his work acknowledges a need to distinguish explicit confirmatory
procedures to address implications of flexibility, stressing, for example, the importance of treating
as provisional identified patterns that had not been tested on different data through procedures like
cross validation (Mosteller & Tukey, 1977).

It is not surprising then, that scholars have continued to stress a division between EDA and
CDA, describing EDA as “freewheeling search for structure” (Buja et al., 2009) and repeating the
analogy originally put forth by Tukey (1972b) of a detective developing hunches while classically
CDA activities like hypothesis testing can be likened to a jury deciding whether a defendant is
guilty (Behrens, 1997; Behrens & Smith, 1996; Buja et al., 2009; Wickham et al., 2010).

However, stressing a distinction betwen EDA and CDA can risk overlooking the strong sentiment
in many of Tukey’s writings of how exploratory analysis and model fitting go hand in hand. Some of
the graphics he espoused can be interpreted in terms of a model; “hanging rootograms,” for example,
would be difficult to motivate without reference to a Poisson count model. By attempting to fit
models to data, one learns about what doesn’t fit, a process that has been called model diagnostics
(Buja et al., 2009) which enables that which didn’t fit to be “more effectively approached and
structured because there has been some fit, even a poor one” (Tukey & Wilk, 1966).

2.2. Exploration versus confirmation in science reform. The modern science reform liter-
ature also involves debates over the role and proper “control” of exploratory analysis in empiri-
cal scientific research. Many reformers have suggested that the lack of reproducibility of many
high profile empirical results in psychology known as the replication crisis can be attributed to
researchers failing to adequately separate exploratory from confirmatory stages of research. For
example, Wagenmakers et al. (2012) motivate an agenda for “purely confirmatory research” due to
how exploratory analyses cause statistics to lose their guarantees. Nosek et al. (2018) describe how
overlooking the difference between EDA and CDA, such as by treating an exploratory study as
though it were confirmatory after learning from the results, can “lead to overconfidence in post hoc
explanations (postdictions) and inflate the likelihood of believing that there is evidence for a finding
when there is not” (p. 2600, as cited in Szollosi and Donkin, 2019). Methods like preregistration
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(Nosek et al., 2019) in which a researcher declares their hypotheses and analysis plan in advance of
data collection, have been popularized as solution.

However, a growing body of work argues that attempts to strictly separate exploratory and
confirmatory analysis are not well motivated logically or empirically. Szollosi et al. (2020) argue
that preregistration does not directly solve the problem of poor diagnosticity of statistical tests when
exploratory findings are confirmed, since these depend critically on how well statistical models map
to underlying theories, nor is there good reason to believe that it will encourage researchers to
reflect more deeply on their theories, methods, and analyses. Others argue that some problems
associated with a lack of distinction between EDA and CDA, like hypothesizing after results are
known (HARKing), are not well evidenced to contribute to a lack of replicability (Rubin, 2017) and
can be helpful if done transparently (Hollenbeck & Wright, 2017). Devezer et al. (2020) point out
how the reform literature provides no unambiguous definitions for confirmatory versus exploratory.

Providing some support for a notion that EDA is “model free,” Oberauer and Lewandowsky
(2019) argue that in discovery-oriented research, theories do not strongly imply testable hypotheses.
Instead, theories define a search space for effects that would support them, where failure to find
effects does not invalidate theory. The question is not how the theory is wrong when effects aren’t
found, but why the data being assessed might not have been appropriate. Only in theory-testing
research does the theory strongly imply a hypothesis and a lack of support for the hypothesis
evidence against the theory. Devezer et al. (2020) describe how, in light of an alternative view that
exploratory analysis often involves deliberate and systematic attempts at discovering generalizations
(Stebbins, 2001 as cited in Devezer et al., 2020), exploratory analysis can be thought of as analogous
to mapping unknown spaces until one is “convinced that there is no element within the region
being explored that remains undiscovered,” whether these be theoretical spaces, model spaces, or
concerned with experimentation. They relate hypothesis generation that occurs during exploratory
analysis to abduction proper, in which scientists consider all of their knowledge about a phenomena
with the aim of adding new insight or understanding, a process which is believed to be irreducible
to formal statistical inference (Blokpoel et al., 2018; van Rooij & Baggio, 2020).

Our view on philosophies of exploratory data analysis for designing interactive interfaces agrees
with recent science reform discussions arguing that the relationship between exploratory and confir-
matory activities is not as simple as proposals for clear separation between the phases imply. Like
recent philosophical work in science reform, we acknowledge that there may not exist a normative
model to encompass the diversity of activities associated with exploratory analysis. We argue that
attempts to formalize inference processes are nonetheless important for guiding interface design
despite their imperfectness. This is because formalizations establish testable implications to drive
knowledge gain about how EDA occurs, while viewing EDA as atheoretical approach can restrict
analysts from identifying connections between their graphical inferences and the models that would
allow them to formalize them. We cite empirical evidence suggesting that GUI EDA applications
may encourage intuitive probabilistic inference that is not followed by confirmatory analysis (Mc-
Curdy et al., 2018; Nguyen et al., 2020; Zgraggen et al., 2018; Z. Zhao et al., 2017), motivating a
need to better integrate support for activities associated with both EDA and CDA.

2.3. Innovations in graphical user interfaces for analysis. Modern interactive data analysis
also owes much to developments in computer science, in the same way that earlier advances in sta-
tistical modeling by Laplace, Gauss, and so forth accompanied progress in mathematics. As Tukey
began writing about exploratory data analysis, computer scientists such as Engelbart, Kay, Suther-
land, and others made pioneering efforts in the development of software interfaces for “intelligence
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augmentation.” As promoted by Engelbart (1963), intelligence augmentation is associated with “in-
creasing the capability of a man to approach a complex problem situation, to gain comprehension
to suit his particular needs, and to derive solutions to problems.” Increased capability could come
as greater efficiency (perhaps framed as “more rapid comprehension” or “speedier solutions” as well
as improved perception of possible solutions to problems that before seemed unsolvable. The broad
framing of IA by these early pioneers outlined a vision for transforming interactions with computers
in which graphical user interfaces for data analysis were a natural step.

Tukey’s and colleagues’ system PRIM-9 augmented the capabilities of a human by enabling
perception of higher (2+) dimensional data (Fisherkeller et al., 1988). A user could “dissect”
multivariate data through point cloud rotation, use masking to select subregions of a space, and
isolate particular subsamples. Because an analyst will rarely be able to specify the “optimal”
projection, finding an appropriate one requires moving about in a multidimensional space, which
PRIM-9 enabled through controlled continuous rotation (Friedman & Stuetzle, 2002). Tukey’s work
on PRIM-9 led to further developments through projection pursuit, the incorporation of automation
into interactive visualization by optimizing a projection index to detect interesting directions of
study (Friedman & Tukey, 1974).

In the decades that followed, other statisticians made graphics contributions. Asimov (1985) in-
troduced the grand tour, which used animation to stitch together projections on high dimensional
data for visual analysis in a seemingly continuous way. Projection pursuit guided tour combined
both methods for better results when identifying low-dimensional structures in sparse high di-
mensional data (Cook et al., 1995). Becker and Cleveland (1987) explored brushing as a way to
interactively select data in a visualization one is analyzing, in order to see the same data in other
linked views, such as when viewing a scatterplot matrix. XGobi (Swayne et al., 1998), followed
by GGobi (Swayne et al., 2003), made these state-of-the-art dynamic statistical graphic methods
available in a single environment. The “scagnostics” (scatterplot diagnostics) of Wilkinson et al.
(2005, 2006) explored a graph-theoretic set of measures for grouping bivariate scatterplots of high
dimensional data, and the grammar of graphics (Wilkinson, 2012) provided a formal description of
statistical graphics.

Computer scientists also began to take more interest in the new interactive capabilities for data
analysis afforded by more powerful computation. Shneiderman (1974, 1982) coined the term “direct
manipulation” in the early 1980s to refer to systems in which objects of interest such as data points
were continuously represented and could be acted on through physical manipulation or button
presses. In contrast to the inflexible and hard to learn syntax of conventional query languages,
direct manipulation was easy and produced immediately visible and reversible results (Hutchins
et al., 1985). One could call direct manipulation interfaces for data analysis an early step towards
“democratizing data analysis,” as these tools reduced the amount of specialized knowledge required
to interact with data; one no longer needed to memorize rigid syntax, for example.

The late 1980s saw the emergence of visualization as a subfield of computer science (McCormick,
1987), focused on amplifying cognition through visual methods drawn from computer graphics,
vision, signal processing, human computer interaction, and others, and addressing domain applica-
tions like medical imaging, planetary sciences, and molecular modeling. Information visualization,
which is closer to our focus here, concerns visualizing abstract data for which spatial mappings can
be chosen more arbitrarily (e.g., statistical graphics) and was distinguished in the 1990s (Card et
al., 1999) drawing in cognitive scientists and psychologists, statisticians, and cartographers. While
many early advances sought to enhance data analysis among experts, the last few decades of re-
search in the field has seen a surge of interest in making visual data analysis accessible to more
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novice users. Today, widely used systems like Tableau Software employ innovations that grew out of
visualization research, by encoding state-of-the-art knowledge on effective visualization (Mackinlay,
1986) and reducing the efforts required to manually specify views through drag-and-drop interfaces
like Tableau’s shelf model (Stolte et al., 2002; Tableau Software, 2021c) or button-driven chart
type transformations (Mackinlay et al., 2007), which interpret these user interactions as database
queries.

More recently, recommender systems have become an active area of research in visualization
(Vartak et al., 2017). Recommenders aim to be even more hands off than popular visualization
tools like Tableau or PowerBI by suggesting data wrangling operations (Kandel et al., 2011), views
to analysts based on perceptual properties (Wongsuphasawat et al., 2015; Wongsuphasawat et al.,
2017), statistical analyses (Demiralp et al., 2017; Key et al., 2012; Vartak et al., 2015) or contextual
or behavioral properties (Bromley et al., 2014; Gotz & Wen, 2009; Key et al., 2012; Lin et al., 2020),
requiring minimal to no input from the user after a dataset has been loaded. Other tools literally
make analysis hands-off or at least “mouse off” by supporting new input modalities like natural
language (Gao et al., 2015; Setlur et al., 2016; Srinivasan & Stasko, 2017) or touch (Microsoft,
2021; Tableau Software, 2015). Such forms of “behavior optimization” comprise the state of the art
in interactive data analysis system design (Rahman et al., 2020).

Research in visual analytics has evolved in tandem with that in interactive visualization, being
differentiable mainly in its focus on integrating visualization-based and automated data analysis
methods and on large datasets that motivate such automation (Keim et al., 2008; Thomas and
Cook, 2005). Relevant to our interests are attempts to conceptualize the visual analytics process as
a model of knowledge generation (N. Andrienko et al., 2018; Keim et al., 2008; Pirolli & Card, 2005;
Sacha et al., 2014; Wang et al., 2009). Researchers have commented on modeling and uncertainty
as implicit in exploratory and interactive analysis (N. Andrienko et al., 2018; Sacha et al., 2014).

Similarly, the rise of “Big Data” as a fascination and challenge faced by industry has also driven
increased interest in interactive analytics in database research, referring to approaches for optimiz-
ing query results for real time analysis by a human. These applications bring their own challenges
(G. Andrienko et al., 2020; Fisher et al., 2012), such as minimizing latency while retaining accept-
able accuracy. User interfaces have not always been central to these efforts, but how to deliver
visualizations and interactions in these paradigms is gaining interest (Alabi & Wu, 2016; Fekete &
Primet, 2016; A. Kim et al., 2015; Moritz et al., 2017; Park et al., 2016).

3. Exploratory analysis or rough confirmatory analysis?

That exploratory visual analysis systems support a diverse range of activities–from data diag-
nostics, to characterizing distributions and relationships, to looking to support a hypothesis—is
acknowledged in the literature on interactive visual analysis (see Battle and Heer, 2019 for a re-
view). Descriptive accounts also tend to acknowledge that it often alternates between open-ended
tasks (e.g., flipping through filters looking for something interesting to explore a space of theories
or models (a.k.a, abduction proper; Devezer et al., 2020; Oberauer and Lewandowsky, 2019) and
more focused exploration (e.g., trying to formulate and validate a hypothesis). However, recent
analogizing of exploratory visual analysis to a multiple comparisons problem by computer scien-
tists (Pu & Kay, 2018; Zgraggen et al., 2018; Z. Zhao et al., 2017) emphasize what Tukey (1972a)
referred to as “rough confirmatory analysis.”

Tukey (1972a) characterized analysis as beginning with an initial exploratory phase in which the
analyst doesn’t consider probability, followed by an intermediate probabilistic stage in which the
analyst attempts to answer the question, “With what accuracy are the appearances already found
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to be believed?”, followed by confirmatory testing. In the intermediate, rough confirmatory stage,
an analyst seeks a coarse set of possible answers to the question of how accurate the apparent
patterns are. He described how the appearances could be “so poorly defined that they can be
forgotten,” or marginal (such that "crude analysis might not suffice and a more careful analysis
is called for”), or well determined such that “we may, but more often do not, have grounds for a
more careful analysis.” Hence, visual analysis is framed as playing a classification role in helping
an analyst distinguish between signals so obvious that statistical modeling is not needed, to those
where noise and confounding might be so great that confirming any perceived patterns is hopeless.
Tukey stressed multiplicity as a key issue in this second stage (Tukey, 1969, 1972a, 1972b), including
“How many things might have been looked at? How many had a real chance to be looked at? How
should the multiplicity decided upon, in answer to these questions, affect the resulting confidence
sets and significance levels?”

3.1. Empirical critiques of ignoring inference in exploratory visual analysis. An emerging
line of critically-themed research in interactive visualization and analysis attempts to problematize a
model-agnostic approach to designing software for visual analysis, implying that users of exploratory
visual analysis tools frequently engage in rough confirmatory analysis. Much of this work remains
speculative, suggesting by way of examples how different types of cognitive biases may arise in
interactive analysis (Dimara et al., 2018; Wall et al., 2017). However, a growing number of empirical
studies are being used to argue about potential threats to valid inference from flexibility or design
decisions in exploratory visual analysis.

For example, one recent line of research argues that by enabling the user to query more and
faster, modern interactive systems for data analysis are particularly likely to result in a multiple
comparisons problem (Pu & Kay, 2018; Zgraggen et al., 2018; Z. Zhao et al., 2017). When using
standard approaches to null hypothesis significance testing (NHST), a multiple comparisons problem
arises because NHST admits a certain percentage of false positives by definition. Hence the more
tests one does, the more false positive conclusions one might expect to arrive at. An implication
made in some recent interactive analysis research is that if visual comparisons are analogous to
significance testing, where a p-value is used to judge whether an effect can be ruled unlikely to be
due to chance, as some statisticians have proposed (Buja et al., 2009; Buja et al., 1999; Wickham
et al., 2010), then those developing interactive analysis system should introduce measures to control
the potential to produce false discoveries.

Z. Zhao et al. (2017) described how most people in a sample they studied who were looking at
histograms of Census data in an analysis task treated patterns they saw as if they were reliable
(“significant”) and didn’t consider how the number of comparisons they did inflated their chance of
finding something interesting. This might suggest that visual analysts stick to observing only very
large patterns where follow up analysis is unnecessary. However, Zgraggen et al. (2018) estimated
the severity of the multiple comparisons problem among 28 moderately experienced analysts, who
used an interactive visual analysis tool to identify any reliable observations or recommendations as
they assessed data samples they generated from a known ground truth population. The authors
tracked each analyst’s total number of visual comparisons using a combination of experimenter
questioning and eye tracking, and used statistical tests against the ground truth to determine the
accuracy of each type of observation they saw (e.g., a comparison between two groups, a statement
about the shape of a distribution, etc.). This led to an estimate that over 60% of the analysts’
conclusions were spurious.
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Figure 3. Plots showing the number of clicks on online advertisements by the region as-
sociated with the website visitor’s network domain, such as a web marketing analysis might
examine to look for regional patterns. Plots are generated from a dataset of size 1000 (a)
versus 50 (b), and visualized using two possible default plotting approaches an exploratory
visual analysis interface might adopt: showing disagreggated data by default but annotat-
ing the mean (left side of each panel), or using only mean aggregation (right side of each
panel). Nguyen et al. (2020) find that the aggregation default affects how sensitive novice
data analysts are to effect size.

Using a similar prompt asking analysts to report generalizations that could be made from ex-
ploratory visualizations, Nguyen et al. (2020) investigated how plotting defaults in interactive visu-
alization and business intelligence tools like Tableau Software may affect novice analysts, who tend
to be least likely to know when or how to change from a default setting in software (Shah & Kesan,
2006). In two online experiments, they showed participants data samples using either disaggregated
views, mean aggregated views, or disaggregated views with an overlaid mark showing the mean and
asked what they might conclude, if anything, about a population. They found that those who used
disaggregated views were less than one-fifth as likely to talk about effects without mentioning how
big they are (e.g., “There’s no difference in sales between campaigns,” “Visitors from the midwest
bought more”). They reported lower confidence values by an average of 6 points on a 100 point
scale, and showed more sensitivity in terms of how many conclusions they drew to whether they
were looking at 50 records or 1000 records.

These recent empirical studies have taken issue with the ambiguity of the concept of an “in-
sight,” which is commonly used to characterize conclusions drawn from an interactive analysis
session (Rahman et al., 2020). This term has been defined in various ways, with one common
definition being a “complex, deep, qualitative, unexpected, and relevant revelation” (North, 2006).
While insights are often framed as being closer to confirmatory processes—Sacha et al. (2014), for
instance, distinguish between exploratory “findings” and more formalized verification loops that
involve “hypothesis” and “insight”—rarely are degrees of belief in an insight discussed or elicited.
A recent empirical study on professional analysts’ naturalistic insight generation with visualization
tools found that only a handful mentioned that identifying an insight involves consider how confi-
dent one can be in it Law et al., 2020, echoing the insensitivity to probability in analysis conclusions
described by the aforementioned studies. Again, this suggests either that users of interactive visual
analysis tools comment only on very large, obvious patterns, or that they are sometimes drawing
conclusions from visual evidence alone, in cases where follow-up analysis would be well-motivated.
The growing empirical evidence seems to better support the latter interpretation.

Several recent critiques in the interactive visualization literature also point to the absence of
attempts to elicit or formalize the role of prior knowledge in interactive analysis studies or systems
(Y. S. Kim et al., 2019; Koonchanok et al., 2021). Though research in visual analytics implies
that prior knowledge plays a role in what one considers a finding or insight (Federico et al., 2017;
Lammarsch et al., 2011; McCurdy et al., 2018), few attempts have been made to integrate prior
knowledge into visual analysis beyond allowing analysts to link text notes to views. For example,
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McCurdy et al. (2018) conclude from an empirical study of visual analysis by global health experts
that the experts often mentally adjust the data they see to account for known “implicit” error, but
the authors imply that such knowledge cannot be integrated directly with data representations.
Cognitive psychologists have studied how experts’ prior knowledge and reasoning strategies lead
them to interact with visualizations differently than novices (see, e.g., Hegarty, 2004; Trafton et al.,
2000), yet the findings of this literature have not necessarily influenced the design of exploratory
analysis tools. One recent exception is a Wizard of Oz study by Choi et al. (2019), which explores
how well users of an exploratory visualization tool can articulate conceptual and model-based
expectations they bring to data based on their prior knowledge, finding that they frequently used
visualizations to validate their expectations.

Limitations of common evaluation methods for interactive visualizations and analysis tools have
been another point of critique. Researchers evaluating interactive visual analysis tools often use
lower time spent on a task and lower error in responses as desirable criteria, along with reported
satisfaction through qualitative user feedback (see Rahman et al., 2020 for a review), similar to the
evaluation of interactive visualization more broadly, where reliance on accuracy reading data and
response time have motivated a long running workshop entitled “Beyond Time and Error” (Sedlmair
et al., 2006). These measures are common even when the goal of an interactive visualization is
framed as supporting reasoning under uncertainty (see Hullman et al., 2018 for a review), suggesting
that researchers may not know how to define measures that would better capture inference or
decision quality.

These and other critiques imply that inference is an important goal in visual analysis. While
this might appear obvious to many readers, the idea that, as Tukey (1990) described, phenomena—
referring to potentially interesting things that we can describe in non-numerical terms—are what
we typically want to learn about when we deal with data, has not been emphasized as much as the
idea of immediate support for pattern finding. Such critiques motivate our proposal that research
on supporting exploratory visual analysis should embrace theories of graphical inference. In the
following section we propose an alternative understanding of exploratory visual analysis as guided
by model checks, and describe possible formalizations of this theory.

4. A Bayesian theory of inference for interactive analysis

The microcosm of activities that comprise interactive analysis—from data diagnostics to theory
exploration to rough to proper confirmatory analysis—may help explain why design philosophies
behind the development of interactive analysis interfaces are hard to identify and at times seem in
conflict. Despite the diversity of activities that occur in data analysis, we propose that research
aimed at developing better interfaces for exploratory analysis would benefit from a more formal
approach to defining the mechanism behind human graphical inference during interactive analysis.

We motivate the need for a theoretical model as follows. Even if some activities fall outside of
the predictions of any specific model, without an underlying theoretical framework to guide the
design of tools, we are hard pressed to identify where our expectations have been proven wrong
and can easily end up with the sort of piece-meal and mostly conceptual theories that dominate
much of the literature on interactive analysis. This lack of formalization makes it difficult to falsify
or derive clear design implications from theoretical work. For example, some work suggests that
visual analysis is a process of fitting intuitive models (N. Andrienko et al., 2018; Choi et al., 2019)
or sensemaking under different forms of uncertainty (Sacha et al., 2014). However, ambiguity in
the underlying assumptions about the structure of an intuitive model and how it may evolve given
a sequence of analysis operations render these conceptions hard to falsify.
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An important clarification is that the value of proposing formal theories of graphical inference
does not depend on those theories or the goals they imply being completely accurate. As researchers
we may never be able to define what it means for an EDA process to be “optimal” or to perfectly
predict human graphical inference in a given situation. However, part of our goal toward improving
interactive analysis interfaces should be to propose and evaluate theories of human inference that are
applicable to many instances, and may provide a standard for instances that exhibit clear deviation
from principles of statistical inference.

What might a formal theory to describe how an analyst responds to data during interactive anal-
ysis look like? If, as the various literature seems to suggest, it is difficult in practice to distinguish
EDA from CDA beyond the fact that CDA is a “final” step of confirming one’s inferences about
real world phenomena, then the theory of statistical inference should provide a useful prescriptive
grounding for such a formalization. We motivate an understanding of interactive visual analysis as
a process of implicit model checking, then formalize this idea in a Bayesian statistical framework.
We discuss this understanding in comparison to related proposed theories of visual analysis.

4.1. Implicit model checking in interactions with data. At a high level, if EDA is understood
to be discovery of the unexpected as is generally assumed, then this is defined relative to the
expected. We note two practical implications of this duality:

(1) Any exploratory graph should be interpretable as a model check, a comparison to “the
expected.” This implies that when constructing such graphs we should be able to figure out
what is the model being used as a basis of comparison. Sometimes, as with a residual plot
(Figure 2c), this comparison is obvious; in fact many exploratory graphics themselves get
their meaning from implicit reference distributions, from histograms inviting comparisons
to bell curves when they are remotely symmetric in appearance (Figure 5) to cumulative
distribution plots inviting comparisons to the diagonal. Other times we can gain insight
by carefully considering what sort of model is being implicitly checked by a graph. For
example, a trellis plot of histograms of house sale price might be used by a real estate agent
in Ames, Iowa to check for a main effect of neighborhood in western Ames (Figure 2a).
A trellis plot showing distributions of hours of sleep for sleep tracker users who report
female versus male as their sex and who have and have not previously used sleep trackers
(Figure 6a), which might be used by an analyst at a sleep tracking company, can be
interpreted as a check of, or exploration of discrepancies from, a more complex linear
model that predicts hoursSleep using the three other plotted variables (e.g., hoursSleep ∼
α+ βs ∗male + βt ∗ sleepTracker + βf ∗ fitnessLevel).

(2) Exploratory analysis can be made more effective by comparing to more sophisticated mod-
els. EDA is often thought of as an alternative to model-based statistical analysis, but once
we think of graphs as comparisons to models, it makes sense that the amount we’ve learned
increases with the complexity of the model being compared to. Effective graphics create
visual structures that enable model inspection by foregrounding comparisons of interest in
ways that exploit the abilities of the human visual system (Bertin, 2010), such as to detect
deviations from symmetry. Graphics are iterated on during exploratory data analysis to
refine the visual comparison or increase the complexity of the model, such as by adding
additional variables to trellis plots, or calculating derived fields to isolate effects while still
relying on position encodings.

There is a corresponding argument in classical hypothesis testing or confirmatory data analysis,
that more is learned from rejection of a complex model than from rejection of a trivial null model
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such as a hypothesis that all effects are exactly zero. In some ways, EDA is like an omnibus
test in that we are open to all sorts of violations of the model, but with the difference that in
exploratory analysis we are interested not so much in rejection as in the particularities of the
discrepancies between model and data: rather than tailoring tests to particular alternatives, we
rely on human pattern-finding abilities to motivate the development of future hypotheses. For
example, in examining a trellis plot like Figure 6a, an analyst might implicitly compare the rows
of the trellis plot, and separately columns, to check for main effects of prior use of a sleep tracker
and sex. They might scan for any panels that seem to deviate from the others to check if there
appear to be any interactions between prior use of a sleep tracker, sex, and fitness level. Without
necessarily realizing it, they might conduct a sort of “mental cross validation,” fitting a linear model
to subsets of the data and then comparing to the left over panel each time. As a result, they might
observe what they think is a slightly different effect of higher fitness level for males who previously
used sleep trackers, and might make further graphical optimizations to assess this observation, such
as adding trend lines (Figure 6b).

To summarize this view, rather than assuming that analysts using interactive analysis software
look for patterns only in a non-probabilistic mode, we instead conceive of them as developing and
updating “pseudo-statistical” models that help them make inferences about real-world phenomena.
By real world phenomena, we mean a referent for an observation made in data analysis that exists
outside the numbers or strings that comprise the dataset. This might be a measurement process,
as in identifying errors in data collection, or a data generation process, as in trying to ascertain
explanations of variability or skew. These phenomena might be evaluated in a past, present, or
future tense.

In contrast to statistical models an analyst might explicitly specify and test, we call these models
pseudo-statistical because while they may be approximated statistically, they may deviate from what
is generally defined as rational inference. For instance, they may be mentally represented in ways
that deviate from a proper statistical model (e.g., at times neglecting probability information so as
to explore a space of possible theories or explanations for data), and they may not be updated as
predicted by a standard Bayesian model of belief updating. Importantly, because of the potential
differences between the predictions of an analyst’s pseudo-statistical model and a corresponding
proper statistical model fit to the observed data and available prior knowledge, we argue that GUI
exploratory data analysis tools should support explicit model checks on the part of the user to aid
them in adjusting their expectations. Below we make this proposal more concrete by formalizing it
in a Bayesian framework, than then talk about its implications for the design of software.

4.2. A Bayesian formulation of graphical inference as model checking. Our proposal above
is informed by a formulation of graphical inference and exploratory analysis as analogous to a ”model
check”: a comparison of data to replicated data under a model, previously proposed by Gelman
(2003, 2004). Put simply, the model checking formulation says that in viewing graphics, the user
imagines data produced by a process that seems reasonable to them, and compares these imagined
data to the observed data plotted in the graph.

More formally, assuming a parameter(s) of interest θ, the model checking formulation expands
the notion of a posterior distribution in Bayesian inference from p(y|θ)p(θ) to p(y|θ)p(θ)p(yrep|θ).
In the formulation of Gelman et al. (1996), yrep is a replicated dataset of the same size and shape
as the observed dataset y, but produced by a hypothesized model that accounts for what is known
about θ. All model checks, whether exploratory (driven by graphical comparisons) or confirmatory
(driven by p-values), represent comparisons between y and yrep. Visualizations, whether real or
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Figure 4. An observed distribution of hours slept per night among 1000 simulated users
of a sleep tracking app (left), compared to a lineup (Buja et al., 2009) comprised of eight
samples from a Gaussian distribution with the same location and scale as observed data.
The skewed observed distribution deviates from expectation in that slightly fewer people than
expected sleep for very long periods, and more people sleep between eight and nine hours.

imagined, can be thought of as visual test statistics (T (y) and T (yrep)); in other words they play
the role of summaries that capture the amount of signal in the data (observed or imagined).

To make this concrete, consider an analyst doing initial checks of distributions after loading
data in a tool that offers interactive data transformation and visualization. They plot multiple
quantitative variables of interest to histograms, and then inspect each to judge distribution. If
the data appear even remotely symmetric, the analyst might naturally try to assess the degree of
symmetry, implicitly comparing what they see to imagined normally distributed data from censored
or non-censored distributions centered on the location they perceive in the plotted data. They
might naturally attend to data that deviate from their expectations of tail behavior for the implicit
distributions, or alternate between comparisons to different implicit reference distributions (e.g.,
unimodal versus mixture) to judge distribution shape. For example, an analyst working for a
sleep tracker company might notice that relative to a Gaussian distribution with similar location
and variance (represented by draws shown in Figure 4a), the distribution of hours slept by 1000
sleep tracking app users shows fewer people sleeping more hours per night (Figure 4a). The visual
“test statistics” that the analyst perceives might be subjected to a discrepancy function, producing
something like an implicit p-value to be judged against the analyst’s internal criteria for when
“enough” evidence exists for a claim (Buja et al., 2009). Depending on the outcome, these model
checks might be followed by the analyst seeking more information about the data collection process
to determine the cause of perceived errors, by the use of statistical summaries or diagnostic tests
of shape if the analyst plans to do confirmatory testing down the road, or simply by moving on to
bivariate comparisons with more assurance that they understand outliers, skew, or other properties
of the variables.

In a Bayesian framework, the hypothesized model that produces the data in these imagined
histograms (yrep) is the posterior predictive distribution p(yrep|y). This distribution can be viewed
of a transformation of the posterior distribution p(θ|y) from parameter space (i.e., in terms of θ) to
data space (i.e., in terms of the underlying measurements). In a Bayesian statistical paradigm, the
posterior distribution p(θ|y) is produced by updating a prior distribution p(θ) by applying Bayes’
rule to a distribution p(y|θ) that captures the likelihood of different values of θ. The posterior
predictive distribution p(θ|y) ∝ p(y|θ)p(θ) is then calculated by marginalizing the distribution of
yrep, which we can think of as a newly drawn version of y given θ, over the posterior distribution
of θ given y. Reflecting on this machinery, the Bayesian model check analogy suggests that an
analyst’s judgments about patterns in data are influenced by perceived properties of the observed
data (likelihood), and by extension the set of visual encodings through which the observed data is
perceived. They can also be influenced by the prior knowledge of the analyst, which can play a
regularizing role by shifting observed differences between groups closer to one another, or the implicit
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Figure 5. An analyst at a sleep tracker company might examine a trellis plot of histograms
of observed hours of sleep (a) from 150 sleep tracker users of female (top) and male (bottom)
sex compared to simulated data generated from a multivariate prior distribution based on a
larger sleep survey Burgard and Ailshire, 2013 (b) to check whether their sample has any
notable dissimilarities.

posterior predictive distribution away from the location or scale of distributions inferred from the
observed data. Finally, they are undoubtedly influenced by the analyst’s statistical experience,
since the space of possible models they perceive will depend on their knowledge.

Consider again the trellis plot in Figure 6a. As in most visualizations, the plot is intended for
estimating more than one parameter, so θ is a vector, which might include slopes and intercepts for
each combination of sex and sleep tracker, as well as more specific comparisons across fitness levels
or hours of sleep within or across particular views. The analyst might perceive slightly different
relationships (e.g., different slope directions) between hours of sleep and fitness level for females
versus males. In eyeballing the plot to estimate intercepts, they might consider prior knowledge they
have about the average difference in hours of sleep between males and females informed by research
on sleep trends (e.g., Burgard and Ailshire, 2013). The analyst’s perceptions of trend in light of
the available information could be compared to the predictions of a maximal (i.e., including all
interactions) Bayesian regression model that accounts for this prior knowledge and places weakly
informative priors on other variables. A few random draws from such a model are plotted in
Figure 6c, and from even this small set it is evident that any small difference an analyst might
perceive in slope is likely unreliable in light of the prior and high variance of the observed data. .

In a Bayesian statistical workflow, visualization is also used to reason about the appropriateness
of the prior, and to compare its predictions to the observed data (Gabry et al., 2019; Gelman et al.,
2020). For example, an analyst might examine the difference in the observed distributions of hours
of sleep for female and male sex (Figure 5) against draws from a prior predictive based on the prior
research (Burgard & Ailshire, 2013).

4.3. Relationship to other models of graphical inference.

Graphical inference as Bayesian cognition. In cognitive science, Bayesian models of cognition (Grif-
fiths et al., 2008; Griffiths et al., 2012) have gained traction for modeling various forms of human
cognition, including object perception (Kersten & Yuille, 2003), causal reasoning (Steyvers et al.,
2003), and knowledge generalization (Tenenbaum et al., 2006). These models assume individual
cognition relies on Bayesian inference: an individual’s implicit beliefs about the world are captured
by a prior; when exposed to new information they update their prior according to Bayes’ rule,
arriving at posterior beliefs. Recent work applies Bayesian models of cognition to how people draw
inferences when shown visualized data, either eliciting their prior beliefs about a parameter (e.g.,
Karduni et al., 2020; Y. S. Kim et al., 2021; Y. S. Kim et al., 2019) or endowing priors, showing
them new data, and then eliciting their posterior beliefs to compare to normative Bayesian posterior
beliefs from one or more models reflecting different ways that Bayesian updating could occur.
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Figure 6. An analyst at a sleep tracker company might use a system like Tableau to create a
trellis plot like that shown in panel a, observing what they perceive as a directionally-different
effect of higher fitness level for males who previously used sleep trackers (shown more clearly
in panel b by adding lines of best fit to each pane). Upon seeing random draws (panel c),
which might be shown a few at a time via animation, or in a static ensemble or interval plot,
the analyst might correct any gaps in their understanding of a reasonable data generating
process.

Bayesian cognition has been applied to visualization-based inference in a normative sense, where
a Bayesian model is used to define “good belief updating” as a standard for comparing to or guiding
people’s belief updates from data (e.g., to evaluate different representations of uncertainty in data
(Y. S. Kim et al., 2019) or guide belief updates (Y. S. Kim et al., 2021)). It has also been used
in a more descriptive sense, in which observations of people’s belief updates are analyzed to gain
insight into how human inference deviates (Karduni et al., 2020; Y. S. Kim et al., 2019), ideally
approached using principled tools for model evaluation and model selection (Tauber et al., 2017).
Toward both normative and descriptive applications, the mathematical basis of Bayesian inference
has been used to calculate measures of graphical inference like perceived sample size, the size of
the equivalent random sample that a Bayesian would have needed to see to arrive at the posterior
beliefs expressed by a user (Y. S. Kim et al., 2019). Toward more descriptive ends, a researcher
might attempt to model sources of deviation from normative updating based on factors other than
the statistical informativeness of the data. For example, hierarchical models in which hyperpriors
describe the bias a person expects from a given information source can be used to reflect on the
forms and strength of distrust in data as a reason for deviation in some settings. Integrating
the predictions of perceptual models like implicit logarithmic perception (Gonzalez & Wu, 1999;
Hollands & Dyre, 2000; Stevens, 1957; Zhang & Maloney, 2012) can help researchers separate
cognitive and perceptual factors.

How is a Bayesian cognition framework as applied to interactive visualization related to the
Bayesian model check framework described above? Both theoretical frameworks rely on the gen-
eralizability of a Bayesian modeling framework for describing human inference. Both can be used
descriptively or normatively. In many ways, their normative versions are complementary when
considering applications to interactive analysis and visualization: Bayesian cognition emphasizes
trying to achieve more rational updating in the context of a predefined model, while the model
check formulation enables us to study what implicit model structures analysts assume when using
graphs to reason about observed data in light of possible prior knowledge. Approaches informed
by Bayesian cognition should help reduce the gap between analysts’ expectations based on implicit
models and reference distributions from the standpoint of information accumulation and statistical
learning.
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What does it look like to use these complementary theoretical frameworks to improve people’s
behavior? Beyond the utility of these frameworks for studying and characterizing behavior, can
they also be incorporated into systems to improve behavior on the fly? In particular, the common
tendency people show toward under-updating as sample size grows, and over-updating as it shrinks
(as described by a model of non-belief in the law of large numbers; Benjamin et al., 2016) implies
testable implications for analysis software. Specifically, conservatism in belief updating deriving
from a bias like non-belief in the law of large numbers would suggest showing more frequent,
smaller samples. Applied to a progressive computation or approximate query processing setting in
which analysts are shown visualizations of partial query results on very large data, developers of
interfaces might think twice about design strategies that provide an initial partial result then only
alert the user to check results when the queries are finished. Applied more broadly to systems for
exploratory visual analysis, conservatism may mean that visualizations and interactions that guide
the user toward partitioning data into smaller subsets or viewing multiple related visualizations
at once, like trellis plots and visualization recommenders, are better for ensuring the analysts’
inferences are appropriately sensitive to sample size than visualizations that encode many variables
in a single view, assuming attention is not in scarce supply. These and other implications of Bayesian
cognition and Bayesian model checking may lead to ideas for how to improve systems in ways that
would be hard to predict without the theory.

The primary challenge to integrating Bayesian cognition into the design and evaluation of in-
teractive analysis tools is eliciting prior and posterior beliefs, as the method used to elicit priors
influences the results (see O’Hagan et al., 2006, for a review) but it can be hard to evaluate whether
one has gotten the right prior for a person. Validation approaches that present draws from the prior
predictive distribution should help some here. The prior elicitation process may also shift any nat-
ural inference process, for example by causing a person to dwell more on their beliefs than they
would. This may be useful or harmful depending on how much a user fixates on or overweights
prior knowledge relative to that gleaned from the data. However, prior elicitation need not rely
entirely on the user’s ability to articulate expectations. Many analysts do not work entirely on
"one-off" data analyses but instead frequently analyze new data samples that use the same or simi-
lar data schema as previously analyzed data. Hence it may be possible for GUI tools to infer priors
with more lightweight steering by the user by mining logs of prior database or data connection
interactions on the part of a user.

Graphical inference as null hypothesis testing. Some statisticians have proposed an analogy between
graphical statistical inference and null hypothesis significance testing (Gelman, 2003; Wickham et
al., 2010); Buja et al. (2009) argue that discovering some insight using a visualization is akin to
rejecting at least one assumption made under a null hypothesis. This understanding has led to
several types of graphical tools.

The Rorschach method involves producing an array of “null” plots, visualizing data drawn from
a null distribution that represents samples from a data generating process where no pattern ex-
ists (Buja et al., 2009; Wickham et al., 2010). The idea is that looking at such plots can calibrate
the eyes for sampling variation as one examines data.

The lineups approach also relies on null plots generated in the same way, but produces an array
of N plots, where one of the plots is of an observed dataset y and the other N − 1 plots are null
plots (Buja et al., 2009; Wickham et al., 2010). If an analyst can identify which of the N plots
shows the observed data, they are said to have performed a visual test equivalent to a hypothesis
test with type 1 error rate of 1/N . The lineup is demonstrated in Figure 8e, which hides a set of
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monthly jobs estimates among nine null plots drawn from a model with no growth. Both approaches
require the analyst to specify the null generating mechanism.

The Bayesian perspective on graphical comparisons as model checks subsumes treating visual
comparisons as null hypothesis significance tests as a special case. The two frameworks align in
many ways: both focus on the importance of judging deviation for some model assumptions, with
the lineup and Rorschach representing general techniques for implementing graphical model checks.

Of course, some null mechanisms might be naive or obviously false (Kale & Hullman, 2019), and
having to specify the null mechanism adds a degree of freedom, so expecting inferences from lineups
to be equivalent to doing an exact statistical test is problematic. We think it is unfortunate that
lineups have been so strongly associated with statistical hypothesis testing, which may imply to
non-statisticians like computer scientists that the technique is less about understanding deviation
than it is about checking whether some difference is equal to zero, which is a priori implausible
in many real world scenarios. In their study of the multiple comparisons problem in exploratory
analysis, Zgraggen et al. (2018) identified each analyst’s explicit hypotheses (those stated by the
participant) and implicit hypotheses (those not reported, but identified later in interviews or using
eye tracking) to estimate how of many conclusions they drew were false positives. Since eye-tracking
remains unrealistic to embed in real interactive analysis tools, other research proposes heuristics
based on session logs to detect visual comparisons made while someone interacts with a visualization
system (Z. Zhao et al., 2017). For example, not every visualization with a filter is a hypothesis
test, but every visualization with a filter condition is a test of the null hypothesis that the filter
condition makes no difference compared to the distribution of the whole dataset. Such approaches
imply a one-to-one mapping between graphical comparisons and statistical tests that is not well
supported by the graphical inference literature. A graphical comparison supports the evaluation
of many different “tests” simultaneously, some of which might not be well understood even by the
analyst until they are violated. For example, even a simple two dimensional scatterplot can lead
to a number of visual judgments of properties associated with scagnostics (Wilkinson et al., 2005),
like clumpiness, monotonocity, or skewness.

Recent research on lineups implies in various ways that the analogy between examining a lineup
and doing an unbiased statistical test is not so simple, including the visual acuity of users and
design of the visualization (VanderPlas & Hofmann, 2015, 2017). Lineups have been applied, for
example, to diagnose problems of fit with hierarchical models (Loy et al., 2017) and to identifying
the “graphical power” of different visualizations for supporting pattern finding (Hofmann et al.,
2012), both use cases that are well aligned with the idea of graphical judgments as model checks
more broadly. Recent work on dual lineups (VanderPlas & Hofmann, 2017), which introduce two
competing signals into a single lineup to identify which is more salient to a viewer, comes closer
to a Bayesian comparison of the relative strength of two competing models with respect to a
common null. In addition to demonstrating how the way visual encodings are used affects the
viewer’s chances of identifying one signal over another, this work also demonstrates how it can
be difficult to define a null generating mechanism that matches the characteristics of non-target
features. Studying how people look at lineups to better understand graphical statistical inference
has become its own line of research (Beecham et al., 2016; Chowdhury et al., 2014; Majumder et al.,
2013; VanderPlas & Hofmann, 2015; Y. Zhao et al., 2013), providing some evidence of our view
above that a good attempt at formalizing graphical inference can lead to better understanding of
human visual inference and where it deviates from expectations.
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Lineups can also be viewed as complementary to the Bayesian cognition approach summarized
above, in that lineups fuse concepts from perceptual psychology like target identification and vi-
sual search with concepts from statistical modeling, while Bayesian cognition fuses concepts from
cognitive psychology and behavioral economics like belief updating and revision with statistical
modeling.

5. Implications for designing interactive analysis software

Tukey (1986) described how the development of expert systems helps address a challenge statis-
ticians face in trying to teach statistical data analysis to the many people who need to use it. One
reason is that “[o]ne just cannot build an expert system without thinking through a strategy,” hence
designing a useful system prompts reflection on what a good strategy is. Another benefit is that a
good expert system can be a way of teaching, such that “[u]sing each well-planned system will then
give continuing education-especially when the user repeatedly asks the system, ‘Why did it choose
to do that?’ After a while, some users will be ready for—nay will demand—more education, which
we should by then be ready to furnish.”

There is an analogy between our vision for exploratory analysis software that more tightly in-
tegrates support for model-driven and probabilistic inferences and Tukey’s observation that expert
systems require reflection on strategies and pave the way for greater education on the part of their
users. We suspect that the prioritization of pattern finding in current GUI tools for exploratory
analysis is only partially intentional. Researchers may have gravitated toward optimizing for per-
ception over cognition because it is easier to observe and thought to be less dependent on the data
analysis context, leaving theories of human graphical inference underexplored. Researchers and
developers of modern GUI systems consequently put analysts in an environment where they are
encouraged to rely on their eyes’ ability to perceive patterns and their intuitions about effective
graphics, combined with the implicit guidance of system defaults. If an analyst wants to transition
to more formal checks against candidate data generating processes, they must develop a process for
doing so within the constraints of the tool, potentially sacrificing rigor when built-in functionality
doesn’t cover their modeling needs, or move to a different tool. This makes it harder for users to
recognize where the patterns they perceive are tenuous, or even when they are making predictions
versus exploring a space of theories.

While we doubt that all users of visual analysis software assume implicit distributions when
they judge “signal” in graphics, or even that very experienced users always consider distributions
during visual analysis, evidence of the use of superficial visual heuristics for estimating effect size or
pattern “significance” is not hard to find in our own and others’ research (Conti et al., 2005; Hofman
et al., 2020; Kale et al., 2020; Nguyen et al., 2020). Researchers and developers of interactive visual
analysis tools should consider how software might encourage more robust inferences. This question
presents an opportunity for thinking differently about how GUI EDA tools can support analysts’
natural processes, but also a significant design challenge, since more integration with modeling may
introduce the possibility of cognitive overload or misuses like overfitting.

5.1. Design requirements and future directions. At a high level, if model-driven inference
underlies exploratory analysis, then systems should be capable of representing data generating
processes. There are several functional implications of this.

First, software should support and encourage the use of robust representations of uncertainty
whenever inference may be a goal. Above we discuss plotting observations rather than aggregations
by default as one simple way software design can prioritize variation and uncertainty. However,
implementing non-parametric bootstrapping as the basis for plotted data would take this a step
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further, potentially helping calibrate analysts to consider uncertainty by default while avoiding the
need to train analysts on how to think about confidence intervals. How to provide the analyst
control while encouraging them to contend with variation and uncertainty whenever patterns are
being taken as “findings” is a question to be tackled in interaction design, and may require some
diversity of strategies to be built in to GUI tools.

Second, analysts should have the ability to specify and see predictions from models of the data
generating process that they wish to consider against the data. This idea is not entirely novel. Many
widely used graphical user interface tools for data analysis, like Tableau, MS Excel, or Data Desk to
name a few do provide modeling tools in the form of built-in statistical tests and regression features.
In fact, Tableau Desktop, which we used to create most figures in this article, currently supports
visualizing reference lines, bands, and empirical distributions (2021b; Figure 7) as well as forecasting
for time series data (2021a). However, these tools are intended for primarily confirmatory use or
prediction based on the observed data, with little recourse to, for instance, customize based on a
prior prediction or to easily compare different possible models of a data generating process.

Figure 7. Tableau’s analytics pane sup-
ports the addition of arbitrary and data-
based reference lines, along with standard
uncertainty intervals based on the plotted
data.

Also related to our vision of supporting
rough model checking are existing tools like the
lineup and Rorschach (Wickham et al., 2010),
both of which have been proposed for compar-
ing observed data to predictions of a null model.
As currently implemented in R these tools re-
quire the analyst to specify the null model pro-
grammatically. What might it look like if these
tools were implemented in GUI systems for ex-
ploratory analysis?

Partly the difference is in emphasis. Systems
could provide users with access to predictions of
null models through built-in recommendations
based on chart and data types. When visual-
izations include various distinct subsets of data,
such as in trellis plots, the analyst could in-
teractively select the data of interest. On the
other side of the spectrum, analysts could see
posterior predictive distributions from a model
fit to data, using either a weakly informative
or elicited prior, whenever visualizations of ob-
served data alone seem ambiguous. When there
is a clear source of prior information, for exam-
ple as in business applications where similar analyses are conducted periodically on the latest sales
or marketing data, seeing model predictions along with the observe data could help the analyst
better perceive what if anything has been learned from the new information.

A key activity toward realizing this aim that has not been well explored by prior research is
what a “grammar” for model recommendations should look like. At the minimum, such a grammar
should include common distributional families like Gaussian, beta/binomial, Poisson, etc.; com-
mon transformations like taking a log; and support for simple additive and multiplicative models.
Ideally there is a connection between the visualization structure and the model. The development
of these tools should involve collaboration between computer scientists with expertise in designing
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interactions and accompanying abstractions and statisticians who bring expertise in robust statis-
tical methods, such as models that minimize critical assumptions that can be fit using analytical
solutions.

One direction for future research is to work toward developing a computational engine for au-
tomated model specification via user interactions with variables like dragging to shelves. Just like
Tableau’s underlying table algebra (Stolte et al., 2002) creates algebraic expressions from user-
selected data fields, where fields are operands operated on by combination functions like cross,
nest, and concatenate to drive visual specifications, a model-generating engine could automatically
compute plausible regression models based on data characteristics. An analyst could visualize pre-
dictions of these models on demand, and customize the model specifications as needed by providing
prior beliefs or varying assumptions. An engine might include precomputation of null alternatives
as well. For example, showing draws from a model with non- or weakly informative prior fit to
observed county data in a choropleth map depicting rates helps the analyst account for the impact
of sample size in their inferences (Correll and Heer, 2016). Draws from a model that assumes all
regions have the same rate, which might be set to the national average or some other baseline value
that analyst decides, may also be useful. By using draws to represent the expected amount of sam-
pling error at the sample size in each region, such models go beyond the canonical null model naive
to population density. For greater flexibility, cases where users wish to target the modeling toward
only some data in a view could directly select a subset by interacting with the chart, then right
click to further parameterize the automatically computed model. Feedback in terms of predictions
from the model should be immediate and reversible, and the analyst should be able to control when
and how they are shown (e.g., through animated draws (Hullman et al., 2015), static ensembles,
continuous representations, and either superimposed in the view or juxtaposed in separate views).

The Bayesian view of graphical examination as posterior predictive check motivates making it
easier in tools for users to articulate prior distributions over parameters. Again in the interest of
avoiding interrupting workflows to dive into code, the user could ideally ‘sketch’ a prior graphically
then draws from it and see these along with observed data. Thought should be put to how to do this,
of course, given that different elicitation interfaces can lead to different strategies for formulating
priors and modeling ‘noise’ from the interface (Y. S. Kim et al., 2019; Sarma and Kay, 2020).

Several existing research prototypes overlap with our proposal, in that they pursue a tighter
integration with statistical modeling and aim to make statistical modeling more accessible to non-
expert users of visual analysis tools. These include Statsplorer (Wacharamanotham et al., 2015),
which focuses on enabling users to select data in visualizations in order to run confirmatory tests
directly, hence differing slightly from our proposal by shifting the focus toward confirmation over
identifying deviation from model predictions, and Northstar (Kraska, 2018), a pen-and-touch driven
system that focuses on visualization combined with fast interactive machine learning.

Finally, on the flip side of the argument we make here, where confirmatory tools are currently
integrated in GUI visualization tools, they should default to graphical model checks. Animated
hypothetical outcomes (Hullman et al., 2015) can be a useful tool here too, though the prevalence
of visual impairments (Chan et al., 2018) motivates retaining access to table-based displays for
viewers who need them.

5.2. Design challenges. As a theory, by implying that software should allow and even encourage
users to make reference distributions explicit, the model check formulation opens up room for con-
siderably more complexity in GUI interfaces for exploratory analysis. This includes the formidable
challenge of developing a grammar of flexible yet robust model specifications and ensuring that
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Figure 8. (a) Bar chart of (simulated) monthly estimates of jobs added or lost in the U.S.
over one year. (b) Representation of a model that assumes steady monthly growth of 15k
jobs with a standard deviation of 75k jobs. (c) Representation of the same growth model as
animated hypothetical outcomes. (d) Fifty draws from the same model depicted as a static
ensemble using lines instead of bars. (e) A lineup hides observed data among 9 null plots
representing draws from a null model in which there is no growth. If users can identify the
observed data from the lineup, they are said to have approximated a hypothesis test with type
1 error rate of 1/N , in this case 0.10. Data adapted from Kale et al. (2018), which found in
a within-subjects experiment that using animated hypothetical outcomes with a rate of 400ms
per frame to display possible data generating processes led to more accurate judgments about
the higher probability model than static ensemble or error bar representations.

models can be fit when users customize them. Naturally there will be kinks in this process, mak-
ing it important to invest in exploring various ways to give feedback to the analyst during model
specification and exploration.

One clear risk is that the additional cognitive load of interacting with reference distributions
overwhelms some users, for example, distracting them from paying as much as attention to the
data as they might have. A key question that often remains unstated in research in interactive
visual analysis is: How much of the statistical inference process that an analyst engages in should
be left implicit in order to preserve cognitive load? We acknowledge that it is difficult to answer
this question without first making concerted attempts in research to realize the forms of integration
we describe above. However, as we argue above, there are many reasons to explore more explicit
integration of statistical modeling in exploratory visual data analysis tools.

An user-centered design approach toward prototyping and evaluating the use of different inter-
action designs for modelling tools will be necessary along with the development of a grammar of
model components. These efforts should work toward guiding design principles, some of which may
be similar to those used for mixed initiative interface design (Horvitz, 1999), like allowing direct
invocation and termination and providing dialogue to resolve key uncertainties rather than making
guesses that a user may not realize were made. A user-centered design process should be followed
by user testing with business, public sector, and academic populations, where user samples are
representative of the range of skill sets in statistical graphics and modeling in those sectors.

Another risk is that adding support for reference distributions introduces new “failure modes”
based on misunderstandings of how the features are meant to be used, or failures of the system
designers to anticipate what details of data structure will be critical to infer or elicit. In particular,
if we expect to encounter tradeoffs in how easily implementable a model is and how appropriate it
is for the sorts of real world scenarios analysts bring to GUI tools, then we risk leading analysts
to overrely on inappropriate models. If analysts began to respond to the tools more than the
data, the link between the models they use and their intuitive theories is weakened, which might
lead to analyses that are less responsive to the data. Overfitting is another concern. More built
in functions for generating model-driven expectations from existing data may, if not designed to
promote debugging and skepticism, exacerbate issues. This possibility motivates design features for
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separating some data for testing when analysts want to check any hypotheses they arrive at. More
broadly, a challenge is how EDA tools can encourage the use of modeling for building understanding
of data generating processes, accounting for uncertainty, and making predictions that can be tested
on future data over manufacturing provable insights. All of these challenges are formidable, but
without trying to push the horizon of what the average GUI tool supports in terms of support for
model checking, it is difficult to say how limiting they will be. Again iterative user-centered in the
development of these tools should help identify how failures can occur and why early in the design
process.

At a higher level, we expect the potential complexity of supporting reference model comparisons
in GUI analysis tools may seem unwelcome to many who have long accepted the model-free or “leave
it all implicit” philosophy in interactive analysis system design. Certainly these activities should
be approached cautiously; visual analytics software has been criticized for unwarranted complexity
in the form of overloading an interface with available functions (Hegarty, 2010). However, rather
than implying that complex modeling must accompany all graphical examinations, we think the
model check theory is better seen as an opportunity for those developing systems to reflect more
deeply on plotting or other strategies analysts may currently use to help them make model driven
judgments. This allows developers to target modeling tools to cases where the status quo of implicit
model checking with graphics is most likely to be prone to vague or erroneous understandings of the
data on the part of the analyst, since here there is more to gain. In particular, users of interactive
visual analysis tools who lack substantial statistical or analytical background might be most prone
to failing to realize where their attempts to find patterns are tenuous or how they could benefit
from thinking about the underlying process producing data.

Finally, we acknowledge that we might be wrong, and attempts to more tightly integrate modeling
into default modes of interactive visual analysis tools might overwhelm most analysts or lead to
more brittle interpretations than the current status quo supports. However, we still see theory
as unavoidable for continued progress in research and development. In particular, more careful
consideration and formal reasoning about the problem space that visual analysis is intended to
address—from signal so large that it “hits you between the eyes” to patterns so overwhelmed by
noise and confounding that further statistical modeling would be useless—may help researchers
better address some of the contradictions posed by critical empirical work.

6. Comparing human to automated statistics

Beyond the design implications of a Bayesian model check formulation, there are various testable
expectations about human graphical inference that could lead to a better understanding of how
people do exploratory visual analysis.

For example, how ubiquitous is conservatism in belief updating, as suggested by recent work
in behavioral economics (e.g., Benjamin et al., 2016) and visualization (e.g., Y. S. Kim et al.,
2019)? What predicts the use of non-probabilistic pattern detection activities for theory or model
exploration versus implicit graphical model checking in an analysis session? And how do changes
to graphical representations (such as showing animated bootstrap replicates) affect visual analysis?
Some of this work will naturally help researchers see what can’t be well identified about intuitive
graphical inference. For example, to faithfully infer implicit reference distributions from experiments
on human graphical inference could require more modeling structure of correlations than would be
reasonable to assume in viewers’ conscious reasoning processes. But the act of trying to specify
users’ processes statistically leaves us with a better understanding of what we can presume about
exploratory analysis versus what remains subject to conjecture.
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We think the research trend toward studying how data analysts use existing GUI systems (e.g.,
Battle and Heer, 2019) is well motivated and much more could be done under the umbrella of
deepening a theoretical foundation. For example, what do different classes of inference look like
in expert use of visual analysis tools? How do analysts use interactive graphics when considering
different causal hypotheses, and can we learn anything about human graphical causal inference by
comparing to models of causal support from mathematical psychology (Tenenbaum & Griffiths,
2001)?

Finally, beyond using theories to produce testable statements about how humans do analysis and
to stimulate new design ideas, considering how we might remove humans from the analysis process
entirely may also paradoxically help us find ways to improve interactive analysis. In other words,
how could an Artificial Intelligence do statistics? We use this question as a thought exercise for
further reflecting on the types of knowledge and strategies that come into play during interactive
analysis.

In the old-fashioned view of Bayesian data analysis as inference-within-a-supermodel, it’s simple
enough to imagine an AI replacing a person: it simply runs some equivalent to a probabilistic
program to learn from the data and make predictions as necessary. But in a modern view of
statistical practice—iterating the steps of model-building, inference-within-a-model, and model-
checking—it’s not quite as clear how the AI works. By taking what currently seems vague and
framing it computationally, we might discover useful regularities or patterns in human statistical
workflows.

To fix ideas, we shall discuss Bayesian data analysis, which can be idealized by dividing it into
the following three steps (Gelman et al., 2013):

(1) Setting up a full probability model—a joint probability distribution for all observable and
unobservable quantities in a problem. The model should be consistent with knowledge
about the underlying scientific problem and the data collection process.

(2) Conditioning on observed data: calculating and interpreting the appropriate posterior dis-
tribution—the conditional probability distribution of the unobserved quantities of ultimate
interest, given the observed data.

(3) Evaluating the fit of the model and the implications of the resulting posterior distribution:
how well does the model fit the data, are the substantive conclusions reasonable, and how
sensitive are the results to the modeling assumptions in step 1? In response, one can alter
or expand the model and repeat the three steps.

Currently, human involvement is needed in all three steps listed above, but in different amounts:

(1) Setting up the model involves a mix of look-up and creativity. We typically pick from
some conventional menu of models (linear regressions, generalized linear models, survival
analysis, Gaussian processes, splines, trees, and so forth). Machine learning toolboxes and
probabilistic programming languages such as Stan enable putting these pieces together in
unlimited ways, with similar expressiveness to how we formulate paragraphs by putting
together words and sentences. Right now, a lot of human effort is needed to set up models
in real problems, but we could imagine an automatic process that constructs models from
parts.

(2) Inference given the model is the most nearly automated part of data analysis. Model-
fitting programs still need a bit of hand-holding for anything but the simplest problems,
but it seems reasonable to assume that the scope of the “self-driving inference program”
will gradually increase. For example, for thirty years we have been able to automatically
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monitor the convergence of iterative simulations (Gelman & Rubin, 1992). With the no-U-
turn sampler, a recursive algorithm builds a set of likely candidate points spanning a wide
swath of the target distribution and stops when it starts to retrace its steps, thus avoiding
the need to tune the number of steps in Hamiltonian Monte Carlo (Hoffman & Gelman,
2014).

(3) The third step—identifying model misfit and, in response, figuring out how to improve the
model—is likely the toughest part to automate. We often learn of model problems through
open-ended exploratory data analysis, where we look at data to find unexpected patterns
and compare inferences to our statistical experience and subject-matter knowledge. Indeed,
a primary piece of advice we espouse to statisticians is to integrate that knowledge into
statistical analysis, both in the form of formal prior distributions and in a willingness to
carefully interrogate the implications of fitted models.

By considering how to fully automate all three steps, we can identify some ways to improve
interactive software. The space of model parts we deem necessary to support step 1, for example,
should directly guide the types of built-in options that interactive analysis tools offer an analyst to
specify their implicit models. When it comes to step 2, inference within the model, we might try to
build in automatic checks (for example, based on adaptive fake-data simulations) to flag problems
with fitting a specified model when they appear. This could help us think about how users might
note immediate problems with an implicit model as they examine graphics.

How would an AI do step 3? The AutoML approach to model evaluation typically involves
choosing a preferred loss function to minimize, e.g., generalization error on held-out data, estimated
using standard procedures like cross validation. But human model checking often combines model
fitness measures with more qualitative assessments of how well model predictions align with domain
knowledge. One approach closer to human model checking is to simulate the human in the loop by
explicitly building a model-checking module that takes the fitted model, uses it to make all sorts
of predictions, and then checks this against some database of subject-matter information such as
a knowledge graph. This is one avenue for attempting to mimic the Aha process behind concepts
like insight that drives scientific revolutions. Trying to construct this would undoubtedly require
deeper inquiry into how humans check model fit, and might lead to ideas for building interactive
systems, like making it easy for analysts to scan through many predictions from their models or
transform them into different measures to ask “does this look right.”

All that is left, then, is the idea of a separate module that identifies problems with model fit based
on comparisons of model inferences to data and prior information. It’s less clear how techniques
from AI and ML research should be combined to do that; this may be the hardest part of the pipeline
to remove humans from the loop. However, by attempting to combine existing technologies we are
likely to learn more about how to think about humans doing model checks, which might also feed
new interface optimizations.

7. Conclusion

Data visualization and exploratory data analysis can be seen as a form of model checking, with
the goal of revealing the unexpected beyond what is already in a model of the world. We pro-
pose a research program that pursues a tighter integration between models, graphics, and data
querying, motivated by a view of interactive analysis as a process of users comparing intuitive
pseudo-statistical models to data via model checks. A Bayesian model check formulation of ex-
ploratory visual analysis makes clearer what types of interactive features would help in phases of
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analysis that resemble rough CDA, like built-in reference distributions, robust uncertainty repre-
sentations, and features to encourage analysts to recognize the links between assumed models and
priors and graphical structures.

Our proposal of Bayesian model checking as a way to unify thinking about different phases
of analysis calls for more thoughtful integration of graphical inference techniques that researchers
are already proposing into visual analysis systems. This includes innovations in uncertainty visu-
alization like animated and static frequency framed depictions of distributions and variations on
graphical inference techniques like lineups and graphical elicitation of priors or predictions from
users, to name a few. While its natural to expect that novel techniques will not necessarily immedi-
ately make their way into mainstream tools, we suspect that a relative lack of theory around what
visual analysis should be stands in the way of graphical inference tools becoming a standard part
of the visual analysis toolkit.

Beyond stimulating new ideas for designing interfaces and new ways of evaluating them, con-
ceiving of interactive analysis as checks against pseudo-statistical mental models pushes us toward
identifying testable implications of different formalizations of this process. Without a theoreti-
cal foundation fields like interactive visualization and visual analytics can become trapped in a
problem-solving orientation to system development. In such an orientation, researchers may be
more likely to continually chase the next application area to design for than to consider ways the
design of an interactive system might help users recognize their own goals and limitations. A good
theoretical framework of modeling feeds a process in which we learn from the ways that peoples’
behavior deviate from model predictions and continually revise our aims as researchers and devel-
opers, including our understanding of the problem space we aim to address with software. This
process is not completely absent in the status quo approach: current efficiency-oriented evaluations
of interactive systems can also help researchers realize when their intuitions are wrong. The point
it is that its likely to be less direct and error prone than if a more formal, normative model were
available, similar to how it is inefficient to learn from only the yes/no answers of null hypothesis
significance tests.

Our argument about the potential consequences of prioritizing pattern exposure in creating tools
for interactive EDA should not be construed as saying that exposing raw data is generally bad in
analysis contexts. In contexts like communicating statistical results, showing the data or proper-
ties of the raw data can be very useful for providing information about effect size, especially in
light of many readers’ tendencies to overestimate effects (Hofman et al., 2020). And, as system
developers and researchers, we face many daunting challenges that existing pattern-focused tools
address well. For example, to make huge datasets interactive at all requires a number of database
and visualization-based optimizations. Similarly many of the interactive analysis innovations we’ve
surveyed, such as recommendations based on graphical (e.g., Wongsuphasawat et al., 2015; Wong-
suphasawat et al., 2017) or statistical features (e.g., Lee and Parameswaran, 2018; Vartak et al.,
2015) have an important role to play in reducing the many manual efforts required to do interactive
analysis. However, we think the field of interactive data analysis could better achieve its goals of
transforming how people interact with data if such innovations were guided by theories of inference.
This is not to suggest that this task will be easy, as there is much still to learn about how to gently
introduce modeling capabilities without interrupting an analyst’s flow, and about what users of
different profiles do given more advanced modeling tools and asked to specify their expectations.

We have focused our discussion primarily on analysis applications involving abstract data, where
standard statistical graphics are the norm. In some other applications of interactive analysis and
scientific visualization, users may have a harder time expressing their implicit models. For example,
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doctors might want to search for clinical features in large databases of medical imagery to help
them in making diagnoses. When experts’ implicit models are based in recognizing of visual-spatial
signatures, it may be harder to elicit them, or at least require very different interfaces than we
propose here. However, the fact that interactive interfaces are moving toward eliciting more input
from domain experts like doctors’ to facilitate their work even when their implicit models are hard
to formally represent suggests some parallels despite the different assumptions that can be made
about the data (Cai et al., 2019).

Finally, a good model of intuitive graphical inference is likely to have implications for com-
municative use of interactive and static visualization as well. We have used the Bayesian model
checking formulation to theorize about the role played by uncertainty communication in commu-
nicative visualization, for example (Hullman et al., 2019). Visualizations are sometimes described as
storytelling devices. The connection here is that stories can themselves be viewed as model checks
or as explorations of anomalies, with the “twist” in a good story corresponding to a confounding of
expectations (Gelman & Basbøll, 2014). Putting these together suggests that designers and readers
should consider visualizations with respect to the expectations or default narratives they overturn.
A good model of inference can help us see the similarities between more than one pair of seemingly
opposed activities.
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