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Abstract
Visualization system designers must decide whether and how to aggregate data by default. Aggregating distributional informa-
tion in a single summary mark like a mean or sum simplifies interpretation, but may lead untrained users to overlook distribu-
tional features. We ask, How are the conclusions drawn by untrained visualization users affected by aggregation strategy? We
present two controlled experiments comparing generalizations of a population that untrained users made from visualizations
that summarized either a 1000 record or 50 record sample with either single mean summary mark, a disaggregated view with
one mark per observation, or a view overlaying a mean summary mark atop a disaggregated view. While we observe no reli-
able effect of aggregation strategy on generalization accuracy at either sample size, users of purely disaggregated views were
slightly less confident in their generalizations on average than users whose views show a single mean summary mark, and less
likely to engage in dichotomous thinking about effects as either present or absent. Comparing results from 1000 record to 50
record dataset, we see a considerably larger decrease in the number of generalizations produced and reported confidence in
generalizations among viewers who saw disaggregated data relative to those who saw only mean summary marks.

CCS Concepts
•Human-centered computing → Visual analytics; Visualization design and evaluation methods; • Computing methodologies
→ Uncertainty quantification;

1. Introduction

Summary visualizations are indispensable to exploratory data anal-
ysis (EDA), the process by which a user visually assesses data to
characterize distributions and trends, identify discrepancies, and
formulate generalizations or predictions about the larger popula-
tion from which data are drawn. Designing an effective summary
visualization for EDA can involve trade-offs, with different design
choices facilitating comprehension in ways that may conflict. For
example, representing each data point with a mark in a disaggre-
gated view affords reasoning about variance and distribution and
depicts sample size (Figure 1 top). On the other hand, presenting
the data using an aggregation (e.g., mean aggregation, Figure 1
center), simplifies the display, reduces error in perceiving expected
value, and scales to multivariate displays and large samples. Pre-
senting a mean annotation atop a disaggregated view may appear
to be the best of both worlds, as it renders both central tendency
and variance visible, assuming users attend to all of the informa-
tion in the display (Figure 1 bottom).

Systems for exploratory data analysis currently vary in default
aggregations. For example, Tableau Software [Tab18] defaults to
sum aggregating data, often resulting in visualizations that dis-
play only a single mark as in Figure 1 center. Visualizing the

same data in Voyager [WMA*16] shows data disaggregated by de-
fault. We ask, What are the implications of such differences? While
some research examines how well viewers can estimate central ten-
dency from disaggregated data [CH17; SHGF16], little empirical
work poses the more applied question of how different aggregation
strategies impact the types of conclusions people draw from sum-
mary visualizations in order to inform practice.

Designers of exploratory visual analysis systems may assume
that users will customize views to support their target inferences
regardless of the default aggregation strategy used by the sys-
tem. However, default settings may have a significant influence
on novice users of software, because they may not be aware of
the need to change from a default or how to do so [SK06]. As
data analysis and visualization tools reach a broader audience of
users, from journalists [Tea18a] to students across a variety of dis-
ciplines [Sch13], understanding the impacts of aggregation choices
is increasingly important for making sure inferences from visual-
ized data are sound.

We contribute the results of two controlled experiments com-
paring untrained visualization users’ generalizations—conclusions
about a population drawn from a sample—made from three visual
aggregation strategies: disaggregating the data, mean aggregation
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of the data, and disaggregating the data but superimposing the mean
aggregation (Figure 1). Participants in each of our pre-registered
within-subjects experiments viewed 15 visualizations representing
a mix of aggregations strategies, with each visualization depicting a
data sample drawn from a known ground truth population. For each
visualization they saw, participants had the option of recording any
“reliable generalizations”, or statements they believed held for the
the population from which the data was sampled, for example “As
the age of visitor increases, the purchase amount also increases”.
For each generalization they made, participants also provided a nu-
meric confidence rating.

In our first pre-registered experiment, participants examined a
relatively large data sample consisting of 1000 records drawn from
a population describing website visitation. While we observe no re-
liable effect of aggregation strategy on the average accuracy of gen-
eralizations, the number of generalizations reported and the confi-
dence that participants express in their generalizations varied by
aggregation condition. In particular, relative to viewing disaggre-
gated data, viewing mean aggregated data led participants to record
fewer generalizations, about which they were more confident. Ad-
ditionally, we find in an exploratory analysis that participants who
viewed disaggregated data, with or without a mean summary, were
only 0.43x to 0.57x as likely to exhibit dichotomous thinking about
effects (i.e., “there is a difference” or “there is not a difference”
without any mention of effect size) on average.

In a second pre-registered experiment, we assess the robustness
of our results to changing the sample size of the dataset. We again
see no difference in accuracy based on aggregation strategy. How-
ever, in comparing the number of generalizations reported for the
small sample to that reported for the large sample, we see a much
bigger drop in the number of generalizations drawn from the small
sample from disaggregated views than mean aggregated views, as
we would hope to see if participants are being sensitive to how a
smaller sample size makes conclusions drawn from the data less
reliable. We also observe slightly larger effects on confidence and
dichotomous thinking in the same direction as those observed in
Experiment 1, where viewing disaggregated data reduced both rel-
ative to mean aggregated data.

Our results confirm that aggregation strategies impact general-
izations drawn by untrained users, and provide insight into how
sensitive they are to the informativeness (i.e., sample size) of data
given different strategies. When aggregation is used as a default
without also plotting disaggregated data, untrained users may en-
gage in more superficial analyses of differences in data. We de-
scribe implications of these results for visualization system design-
ers and how future work might employ alternative study designs
to evaluate possible implications of aggregation strategies for ex-
ploratory data analysis.

2. Related Work

2.1. Visual Summary Strategies

While aggregation has well-studied implications for statistical anal-
yses (e.g., [CA76]), the impacts of aggregation strategies on peo-
ple’s conclusions from visual analysis of data have not been thor-
oughly explored. Gschwandtner et al. compare 6 different visual

Figure 1: E1 stimuli depicting a sample size of n=1000. Shown are
univariate visualizations demonstrating disaggregated data (top),
mean aggregated data (center, encoded using a bar rather than line
mark), and disaggregated data with mean (bottom). All stimuli are
included in the supplementary material.

summaries of aggregated univariate data [GBFM16] across tasks.
Their results suggest that success of visual encoding correlates to
task, although they fail to compare disaggregated views of data.
Sarikaya et al. describe visual summaries in visual analytics tools
through a quantitative content analysis of 180 publications describ-
ing visual analysis systems [SGS18]. Their results suggest a strong
correlation between summarization methods (such as aggregation)
and intended tasks. Aggregation appeared in 74% of the summaries
they coded, including all presentation-oriented summaries and 9
out of 10 univariate summaries, and typically corresponded to in-
tended tasks of characterizing the entire data set through specific
measures. They suggest critically examining the task specificity
versus flexibility trade-off between aggregation and other summa-
rization approaches like showing all the data. However, it is difficult
to define any single common task for the aggregation defaults used
in visualization systems. We contribute two controlled experiments
aimed at assessing how the quantity, nature, and accuracy of gener-
alizations that system users make about the data can vary as a result
of aggregation strategy as a step toward better understanding how
naturalistic inferences may be affected by such defaults.

Some researchers have suggested ensemble perception as an
alternative to aggregation, where a person perceives distribu-
tional properties from groups of visual items spread over space
or time [CG15; CH17; HRA15; KNKH18; SHGF16]. Accu-
mulating evidence suggests that the visual system is capable of
quickly, automatically, and accurately extracting mental representa-
tions of ensembles [AO07; Alv11; HW09; HZ84; HB15; LKW16;
MPOW17]. Visualization researchers have examined how well
people can infer statistics from encodings that vary in their level of
aggregation for particular types of data, like time series [ARH12;
ACG14], multiclass scatterplots [GCNF13], or hierarchical data
sets [EF10].

Correll and Gleicher [CG15] propose that ensemble processing
may have benefits beyond flexibility of inferences. They suggest
that “implicit uncertainty visualization,” in which designers forego
the addition of summary marks like mean annotations in favor of
presenting ensembles of data points, may result in viewers hav-
ing greater trust in their internal representation of uncertainty be-
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cause they constructed it themselves. If this is true, we would ex-
pect viewers to be more confident in those generalizations that they
report from disaggregated views. We elicit confidence for each gen-
eralization that a person provides in our study. This allows us to
assess whether confidence varies reliably based on whether the vi-
sualization employs ensemble processing or not.

2.2. Aggregation Strategies for Simple Datasets

We are interested in how aggregation strategies impact the gener-
alizations that untrained users draw as they examine visualizations.
Common strategies for univariate and multivariate data include:

1. Disaggregating data by default (Figure 1, top).
2. Presenting classed (i.e., binned) data, where the number of bins

is less than the number of data points (e.g., univariate or multi-
variate histogram).

3. Using a single summary mark to represent a chosen aggregation
(such as a mean or sum) (Figure 1 center).

4. Presenting multiple measures as summary marks, such as by
conveying central tendency and variance in a bar chart with error
bars or quartiles in a boxplot.

5. Visualizing a density function, such as a univariate density plot
or multivariate visualization like a heatmap or continuous scat-
terplot [BW08].

6. Presenting some combination of disaggregated data and sum-
mary marks, such as a disaggregated view with an overlaid sum-
mary mark representing central tendency (Figure 1 bottom).

The above strategies can be distinguished based on whether they
explicitly present central tendency (#3), variance (#1), or provide
access to both (#4, #5, #6) (with the fidelity of the information in #3
depending on the number of bins chosen). Taking into account hu-
man ensemble processing capabilities, disaggregating data by de-
fault (#1) enables judgments of both central tendency and variance,
though with the possibility of more error in estimates of central
tendency relative to the other techniques.

Strategies #2, #3, #4, and #5 avoid presenting individual data
points, and consequently better scale to very large data sets. Strat-
egy #3 reduces distributions to a single point estimate, potentially
simplifying visual judgements, albeit with error proportional to
how well the chosen aggregation summarizes the distribution. This
strategy may be chosen as a default in some existing visualization
systems because it both scales well to large data and aligns with
well-established preferences among people to avoid uncertainty in-
formation where possible, such as by using heuristics based on
representativeness or central tendency [TK74]. However, when the
sample size is not very large, omitting distributional information
(such as sample size and variance) prevents users of a visualiza-
tion from reasoning about effect size, or the difference between
the means of two distributions taking into account the variance
in each [Coe02]. Consequently, users cannot account for the reli-
ability of the difference between two distributions, making infer-
ence error prone. Our study looks at the implications of presenting
only an aggregated measure for untrained users’ generalizations, as
these users may not be aware of the risks of drawing conclusions
without access to other distributional information.

Empirical evidence suggests that using summary marks to en-

code distributional information, as in #4 leads to misinterpretations
of data, among both trained and untrained users [BFWC05; CG14;
Neu12]. Strategies like #5 scale well to large data and implicitly
convey central tendency while also providing a view of the dis-
tribution. However, existing visualization systems do not typically
employ these methods by default, perhaps because they are consid-
ered too specialized for some users. We compare untrained users’
inferences from examples of #1, #2, #3 and #6 as these currently
appear in systems.

To understand the extent to which existing systems use ag-
gregation defaults, we surveyed those used in Microsoft Power
BI [Cor18] Tableau [Tab18], Tibco Spotfire [Inc18], and Voy-
ager [WMA*16]. Power BI requires the user to choose a chart type,
putting the choice of whether to aggregate in the user’s hands. For
univariate data, the user might see a bar, line, or dot chart. Tableau
presents a bar showing sum aggregation, and Spotfire presents a
histogram. Voyager defaults to a one dimensional scatterplot (i.e.,
strip plot, Figure 1) where each data point is encoded as an indi-
vidual mark. For data consisting of a quantitative variable and a
categorical variable, depending on the chart type chosen PowerBI
presents a bar, line, or dot chart. Both Tableau and Spotfire present
a bar chart with the category on the x-axis and the bar height rep-
resenting a sum aggregation. Voyager presents a facetted strip plot
(Figure 3). Given two quantitative variables, Excel and PowerBI
again make suggestions depending on the chart type shown (e.g., a
scatterplot, two series line chart, or grouped bar chart if the user
selects scatterplot, line, and bar respectively). Tableau uses sum
aggregation by default on both variables, resulting in a scatterplot
with a single point. Voyager and Spotfire present scatterplots of dis-
aggregated data. The disparity in aggregation defaults across these
systems motivates our controlled comparison of how aggregation
strategies impact novice users’ inferences.

3. Experiment 1: Comparing Aggregation Strategies

To better understand how different aggregation strategies may im-
pact what novice visualization users extrapolate from a sample to a
population, we conducted a controlled online experiment on Ama-
zon’s Mechanical Turk [Ama18]. Our experiment asked partici-
pants to view and respond to visualizations that use different aggre-
gation strategies to depict subsets of a data sample that we gener-
ated from a ground truth population. While an in-depth naturalistic
study of exploratory data analysis [ZZZK18] optimizes for exter-
nal validity, an online experiment provides the control over stimuli
and statistical power needed to compare the effects of aggregation
strategies on inferences.

3.1. Experiment Conditions & Research Questions

As described above, aggregate measures of central tendency or sum
(#3 above) may be preferred by some visualization system develop-
ers because they simplify views and avoid overplotting. Our aggre-
gate strategy condition uses mean aggregation, because we expect
untrained users to be more familiar with reasoning about averages
based on their common usage for summarizing data in the media,
science, and other everyday applications [Gal95].

When it comes to presenting uncertainty or distributional infor-
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mation, the empirical evidence suggests that using disaggregated
data (#1 above) rather than summary marks or plots (#3, #5 above)
to convey distributional information is less likely to confuse users
(particularly untrained users) [BFWC05; CG14; Neu12]. We there-
fore include a disaggregated strategy condition.

One way of enabling both estimates of central tendency and dis-
tribution for untrained users is to plot disaggregated data but to add
a mark representing the mean (#6). Adding a mean mark may re-
duce error in mean estimates for some users, but may also affect
the aspects of the view that the user focuses on, such that general-
izations are more likely to describe central tendency. We include
a disaggregated with mean strategy condition to examine this
trade-off.

3.1.1. Unit of Analysis: Generalization

In contrast to prior work that examines how well users can do
narrowly defined tasks like reading probabilities or judging cen-
tral tendency with different visual representations of distributions
(e.g., [CG14; FWM*18; HRA15; KKHM16; KNKH18]), we are
interested in more naturalistic behaviors that might occur as a
user views plots in an exploratory data analysis setting. Based on
an understanding of visualization interpretation as statistical infer-
ence [Tuk77], we define a generalization as a statement about the
sample that a viewer believes also describes the population from
which the data is drawn.

As inferential statements, generalizations provide information
about how visualization users think about and place confidence in
data. We can assess generalizations from an accuracy perspective,
as commonly used in visualization evaluations [LBI*12; IIS*14;
HQC*19], asking whether different visual aggregation strategies
lead to systematic differences in generalization accuracy. Recent
work by Zgraggen et al. and Zhao et al. [ZZZK18; ZDZ*17] on
strategies for addressing the multiple comparisons problem demon-
strates a data generation process in which generalizations or “in-
sights” produced during exploratory data analysis can be definitely
labeled as correct or incorrect. When data shown to users are drawn
from a known ground truth model, generalization accuracy can be
determined parametrically where test assumptions are clearly met
or non-parametrically through bootstrapping [EfIM82].

Assessing generalization accuracy requires that the user’s sub-
jective sense of the generalization’s truth value is equivalent to a
statistical notion of what it means for a statement to hold true (e.g.,
statistically significant at α=0.05). In reality, even when prompted
for “reliable” generalizations only, a user who is not accustomed to
reasoning about subjective uncertainty may instead report observa-
tions about the sample alone, or hunches about the population for
which their level of certainty is not easily comparable to a statistical
definition of 95% certain [Hul16].

To allow for the fact that untrained users’ estimates of how likely
a statement is to describe the population may not perfectly align
with a notion of reliability as Null Hypothesis Significance Testing
(NHST) at α=0.05, we elicit a participant’s confidence in their gen-
eralization using a 100 point slider. Eliciting confidence allows us
to evaluate whether different visual aggregation strategies produce
systematically different levels of confidence, and how confidence
changes with a smaller sample size (Experiment 2).

Another approach for assessing generalizations beyond simply
labeling them true or false prioritizes estimation (e.g., [Cum14;
HFKJ06]). In an estimation paradigm, the focus is on the magni-
tude and uncertainty of an effect, which are argued to be associated
with more valid scientific inferences that use of significance testing.
We can assess the extent to which a participant’s generalizations ex-
hibit estimation by coding when a generalization exhibits reasoning
about effect magnitude (e.g., “Ad B very slightly increased mean
purchases”). Though not about effects, we can also compare gen-
eralizations in how frequently they contain quantitative predictions
about values of variables in the data (e.g., “It seems most people
made 2-4 purchases on the site”).

Finally, we expect that different visual aggregation strategies
may lead users to emphasize different aspects of the data in their
generalizations. As a descriptive analysis, we can look at the focus
of the generalizations (i.e., whether they focus on central tendency,
variance or distribution shape, etc.), taking into account the stimuli
that the user viewed as necessary to help distinguish their intention.

3.2. Methods

We designed a within-subjects experiment consisting of 15 tri-
als. In each trial, we presented participants with a visualization
that used either mean aggregation, disaggregation or disaggregation
plus mean aggregation. Participants had the option of recording one
or more generalizations that could be made from the data.

3.2.1. Data Generation and Sample Size

To create the dataset from which each visualization stimuli was
generated, we adapted the data generation method, domain and
sample size used by Zgraggen et al. [ZZZK18]. We replicated
their procedures with the exception of several small changes. We
chose one of the two datasets they tested, (online shopping), which
contains customer information from a fictional online website. The
dataset consists of 12 attributes (4 quantitative, 3 nominal, 5 ordi-
nal), including information like ages of customers, income, aver-
age number of purchases per month and average time spent on the
site. We chose to use this dataset rather than Zgraggen et al.’s sleep
dataset because results from a pilot study we conducted indicated
that participants relied more on the data and less on their own in-
tuitions and prior assumptions about the domain with the shopping
dataset compared to the sleep dataset. We used the same synthetic
dataset for each participant.

We embed ground truth labels in the dataset, which allows us to
later code any generalization as correct or not. For an n-attribute
dataset, we generate n/2 “true” relationships as correlated pairs.
These n/2 pairs are chosen randomly from the set of variables and
given a non-zero absolute correlation coefficient. While Zgraggen
et al. counted any non-zero correlation as a ground truth correla-
tion, we required that these correlations be greater than 0.4 to en-
sure that participants would not be “penalized” for failing to ob-
serve small correlations that might be difficult to notice in plots.
We sampled data from bivariate normal random variables param-
eterized by these correlation coefficients. This process results in a
dataset with 12 total attributes (4 quantitative, 3 nominal, 5 ordi-
nal), and 6 correlated attribute pairs. We used the above process to
produce a dataset containing 1000 records.
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Figure 2: Examples of stimuli used in Experiment 1 and Experiment 2. Shown are disaggregated data with mean (left) and mean aggregated
data (right) for Experiment 1 (n=1000, left column) and Experiment 2 (n=50, right column). Disaggregated data stimuli simply have the
mean mark in red removed for each chart. Each row depicts the data-type combination: univariate (top), one quantitative and one categorical
attribute (middle), and two quantitative attributes (bottom). All stimuli are included in the supplementary material.

3.2.2. Stimuli Generation

To include realistic data combinations in the visualizations we pre-
sented to participants, we formulated three data-type combinations.
These data attribute combinations include univariate: where the
chart displays a single quantitative data attribute (i.e. age); a chart
that displays one quantitative attribute and one nominal attribute
(i.e. purchase amount and education level); and two quantitative
attributes (i.e. purchase amount and number of purchases).

To identify the particular subsets of variables that we would
plot for each data-type combination we relied on a small formative
study of exploratory data analysis with the online shopping dataset.
Four participants from our university who were familiar with data
analysis spent 70 minutes using the Voyager system [WMA*16] to
generate and examine visualizations to support data analysis. Ana-
lyzing user-generated views, we identified attributes of the dataset
that participants deemed worth exploring. In total we identified five
data attribute subsets for each data-type combination (e.g. income,
region and purchases, age and purchase amount), resulting in 15
total data-type combination stimuli. When by crossing these with
the three aggregation strategies, we generated 45 total stimuli.

3.2.3. Procedure

Preregistration: We pre-registered our conditions, analysis and
data collection criteria on the Open Science Framework (https:
//osf.io/v87wd/) before collecting data.

We conducted our experiment on Amazon Mechanical Turk

(MTurk) as a single Human Intelligence Task (HIT) composed of
15 trials. Each participant saw at least 4 stimuli that applied each
aggregation strategy. We ensured that the combined assignment
of data-type combination (univariate, categorical and quantitative,
quantitative and quantitative) and aggregation strategy (disaggre-
gated, mean aggregated, and disaggregated with mean aggregation)
were fully balanced across participants, and randomized the order
of presentation of the trials for each participant.

Upon accepting the “Human Intelligence Task” (HIT), partici-
pants were re-directed to a web page containing instructions for
the task. Participants were given a description of the dataset (in-
cluding sample size) and asked to “note any observations you can
make about the larger population of visitors to the website given the
sampled data,” and to “only include reliable observations that you
would report to a superior like a manager if this was your job, or
that you might make decisions based off of.” For each trial, partici-
pants were asked to record all of their generalizations one at a time
through text entry. They were free to record as many generaliza-
tions as they would like about each visualization stimuli presented
to them, or no generalization at all (Figure 3).

Participants were asked to report “how confident they are that
this observation will apply beyond this sample to the larger pop-
ulation of visitors to the website,” using a slider ranging from 0
(labeled not confident) to 100 (labeled completely confident). To
control for anchoring effects, the initial position of the slider han-
dle was randomly assigned between participants. Upon completion
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Figure 3: A depiction of the task interface used in our studies (dis-
aggregation by default stimuli shown). The participant uses buttons
to add additional generalizations and is prompted to record their
confidence with a slider after completing generalizations on the
single page.

of the study we ensured that there were no systematic differences
in initial position by aggregation condition.

3.2.4. Participants

To determine the number of participants for the experiment, we
conducted a pilot study with 9 participants. A simulation-based
power analysis on accuracy differences observed in the pilot data
suggested a target of 90 participants to achieve 80% power under
α = 0.05. We recruited workers from the United States with an ap-
proval rating of 97% or above. Participants were compensated with
$5.00 for completing all the tasks. We ensured counterbalancing of
the order of trials by running small batches, and after each batch
applying our pre-registered exclusion criteria to the collected data.
This was repeated until we had a total of 90 complete sets of gener-
alizations from participants after exclusions. During the collection
process, one participant was excluded due to the same confidence
value on all trials, and six participants were excluded because the
majority of their generalizations were not about the data they saw,
all omissions per our preregistered exclusion criteria (see Prereg-
istration). We used participant identifiers on MTurk to deny those
who had previously completed the experiment to retake it.

We did not exclude participants based on statistical familiarity.
In an exit survey, 80 participants self-reported their familiarity with
statistics on a five point scale. Of these, four (5%) participants re-
ported that they “used statistics often or were experts”, 15 (19%)
that they “took [statistics] in college and sometimes use it”, 28
(35%) that they “took it in college but rarely use statistics” and
33 (41%) that they have “very little experience, and never took a
course”. These results suggest that the large majority of partici-
pants were not very familiar with statistics. Additionally, 80 partic-

ipants reported their usage of “charts and graphs” on a five point
scale. 6 (8%) participants reported that they “never” use charts, 33
(41%) that they “rarely (less than once a month)”, 19 (24%) that
they “Sometimes (1-5 times per month)”, 17 (21%) “Often (1 - 5
times per week)”, and 2 (3%) participants use charts “Very often
(about everyday)”. These results suggest that a majority of partici-
pants were not highly familiar with visualization.

3.3. Analysis Design

We analyze all generalizations reported by participants with a few
exceptions. We apply pre-registered exclusion criteria and exclude
generalizations that simply reiterated attributes of the visualization
(e.g. “Chart shows the income and mean income”), generalizations
based on prior or personal knowledge (e.g. “Graduate students are
most likely budgeting money to pay off student loans”), or gen-
eralizations that misinterpreted the visualization (e.g. “There is a
3.5% dropout rate” when the participant viewed a visualization of
number of purchases by education level).

3.3.1. Coding of Generalizations

We coded participants’ generalizations into one of five generaliza-
tion classes modeled after Zgraggen et al.’s insight classes: mean,
variance, correlation, shape, ranking. Mean refers to direct esti-
mates or comparisons describing expectations for the population
mean (e.g. “The average purchase is about $128.”). Variance refers
to direct estimates or comparisons of the distribution’s variance
(e.g. “The variation of purchases throughout the regions does not
change greatly”). Correlation refers to statements describing a per-
ceived relationship between two parameters (e.g. “Income doesn’t
significantly affect how many purchases a buyer makes.”). Shape
refers to statements about the shape or density of the distribution
(e.g. “Most customers have a bachelors degree.”). Finally, rank
refers to statements where participants rank more than two levels
of a categorical variable by a quantitative variable (e.g. “Blue is the
most popular color.”, “Red is the least popular color.”). Three of
the authors participated in coding, with the first and second author
completing the majority. In cases where it was not obvious how
to code a generalization, the three coders discussed the code until
resolution was reached.

Per our preregistration we also coded when a generalization
made a quantitative prediction (QP) or mentioned effect magni-
tude (EM). If a generalization contains a numeric statement about
the value of a visualized variable (e.g. “Mean income is around
90,000”, “Most buyers make between 3 and 4 purchases.”), we
mark it true for quantitative prediction. If the generalization men-
tions the magnitude of an observed effect of one parameter on the
other (e.g. “Ad campaign had little impact on the 100-150k range
of income customers.”), we code it true for effect magnitude.

3.3.2. Evaluation of Generalization Accuracy

The accuracy of each generalization can be evaluated against the
ground truth model [ZZZK18]. For example, “Age correlates with
amount of spending” can be coded as true if the model that gen-
erated the dataset included an embedded correlation between these
two variables. If two attributes are instead sampled from indepen-
dent normal random variables, the generalization is false. However,
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Figure 4: Example generalizations and their respective correctness, reported confidence, and codes for generalization class, quantitative
prediction, effect magnitude and dichotomous thinking.

only some of the generalizations can be evaluated for ground truth
by evaluating attribute relationships in the ground truth. We trans-
late all other generalizations into testable queries and compare them
against our 10M record sample dataset generated from the ground
truth model (see Data Generation).

To convert an encoded generalization into a query, we first need
to translate ambiguities in the generalization. For instance, a state-
ment about an estimate of central tendency, “The amount per pur-
chase seems to average about 150” can be interpreted as imply-
ing some uncertainty in the participant’s estimate of the mean. Re-
search in number sense suggests that people are sensitive to the
ways in which rounded numbers imply uncertainty [BHG*11]. If
the population mean is close, but not exactly 150, this would seem
to align with what the participant stated. On the other hand, a gen-
eralization like “The average number minutes on the site is 55.76”
indicates either a misunderstanding of the task (to report reliable
generalizations that are expected to hold for the population) or an
absurdly precise (i.e., confident) estimate of the population mean.
When a generalization implies rounding, we follow Zgraggen et
al.’s process to account for the potential uncertainty by adding an
interval of 10% around the hypothesized central tendency. When a
generalization is reported to decimal points or to values that don’t
imply rounding, then we do not account for the aforementioned
10% interval, as [BHG*11] shows that higher precision reflects
less uncertainty about predictions. We expect that while noisy, this
strategy is relatively conservative in concluding a generalization is
wrong (e.g., a generalization that the mean of a variable is 150 is
considered accurate so long as the interval [135, 165] contains the
population mean, a generalization that the mean is 500 is accurate
if the interval [450, 550] contains the population mean).

Other examples of resolving ambiguities around generalizations
include interpreting textual descriptions of uncertainty as numer-
ical thresholds, such as “Very few shoppers make purchases af-
ter 60 years old” (see Preregistration). We interpret phrases that
imply a small number (“very few”, “a small portion”) conserva-
tively as “20% or less of the sample.” We interpret phrases that im-
ply a strong majority (“most people make 3 purchases”) as “80%
or more of the sample.” We follow the procedure of Zgraggen et
al. [ZZZK18] and evaluated ambiguities conservatively, giving the
participant the benefit of the doubt in assuming an implied level
of precision. Once queries were specified, we ran them against the

Figure 5: The distribution across generalization types by aggrega-
tion strategy across all trials (left) and the first trial only (right).

10M record sample and recorded whether the result was true (cor-
rect) or false (incorrect).

3.4. Results

90 full sets of generalizations that passed our pre-registered exclu-
sion criteria were collected. We omitted from analysis seven sets of
data from participants who completed the study but did not pass our
pre-registered exclusion criteria. The average time to complete the
task was 21.6 min (sd: 9.9 min), with an average trial completion
time of 93.1 sec (sd: 107.5 sec).

3.4.1. Generalization Frequency and Type

Participants submitted a total of 1,941 generalizations. Of these, we
omitted 52 generalizations that did not appear to be about the data
or that were gross misinterpretations of the visualization that was
shown, as described in §3.3.1 (24 disaggregated, 19 disaggregated
with means, 19 mean). We omitted 134 trials from analysis where
the participant did not express any generalizations for that view (43
disaggregated, 43 disaggregated with means, 48 mean). This pro-
cess left us with 1,743 trials (90%). Not counting trials for which no
generalizations were produced, our omission rate is slightly lower
than that of Zgraggen et al. [ZZZK18], who removed 6 out of 161
generalizations.

We observed the fewest generalizations in the mean aggrega-
tion condition with 528 (30.2%), with the two disaggregated con-
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Figure 6: Posterior estimates in E1 of effects of aggregation strat-
egy on the probability that (a) a participant’s generalization is cor-
rect, (b) a participant reports lower confidence, (c) a participant’s
generalization expresses a quantitative prediction, (d) a partici-
pant’s generalization references effect magnitude and (e) a partici-
pant’s generalization references a dichotomous effect. Effects in all
models except confidence are expressed in terms of odds ratios rel-
ative to viewing a mean aggregation. Intercept and estimate effect
of trial are available in Supplemental Material.

ditions producing similar numbers (with mean: 608, 34.9%; with-
out: 607, 34.8%). Across data-type combinations we observed the
fewest generalizations for univariate data (482; 27.6%), followed
by two quantitative variables (610; 35.0%) and one nominal, one
quantitative data (651; 37.3%).

Of our total generalizations, 718 (41.2%) described a mean or
difference in means, 519 (30.0%) described distribution shape, 283
(16.2%) described a correlation, 220 (12.6%) described a rank, and
only 3 (0.01%) concerned variance (Figure 5). Breaking these per-
centages down by aggregation strategy, we see obvious expected
patterns like more shape generalizations when data is disaggregated
by default relative to mean aggregation alone (52.2% vs 17.8%;
33.1% for disaggregation with mean), less mean generalizations
(25.0% vs 43.9%; 39.2% for disaggregation with mean), and less
correlation generalizations (13.2% vs 20.3%; 15.7% for disaggre-
gation with mean).

It is possible that our use of mean aggregation led workers to
focus more on means even on trials where means were not plotted
(disaggregated). To understand how much of an influence this may
have had we analyzed the types of generalizations that participants
generated on only the first trial. We observe the same ranking by
frequency of generalization types, with roughly 16% fewer mean
generalizations in the disaggregated condition (Figure 5 right), sug-
gesting that viewing means in earlier trials may inflate the proba-
bility of mean generalizations in later trials. We therefore control
for trial number in our models, described below.

3.4.2. Accuracy

Of the generalizations that we analyzed, 66.4% were accurate. The
average participant was accurate for 67.4% of their generaliza-
tions, though this rate ranged considerably across participants (min:
31.6%, max: 100.0%, sd: 16.1%).

Overall accuracy rates were similar across aggregation strate-
gies, with disaggregated views producing a rate of 65.5%, mean ag-
gregated views producing a rate of 67.2%, and disaggregated views
with mean annotation producing a rate of 66.7%.

To assess accuracy by aggregation strategy while controlling
for the random effects of participant and dataset ID (which of the
15 datasets, with 5 of each data-type combination, the participant
saw), we specified a pre-registered Bayesian hierarchical binomial
model. Our model predicts the mean effect (β coefficients) of disag-
gregation and disaggregation with mean annotation (represented by
dummy variables) on the probability that a generalization is correct.
Mean aggregation is the reference class to which coefficients refer.
We also estimated the mean effect of trial number. We estimated
varying intercepts for participant ID and dataset ID. We specified
identical weakly regularizing Gaussian priors centered on 0 for
each effect (β; standard deviation of 5). We specified half-Cauchy
priors centered on 0 for the estimated variance for varying inter-
cepts effects (σ; standard deviation of 1). Half-Cauchy distributions
are Cauchy defined over positive real numbers only; Cauchy distri-
butions are thick tailed and preferable to Gaussian distributions as
a weakly regularizing prior [McE15]. We specified and ran the ac-
curacy model and all other Bayesian models reported below using
the rethinking package for R[McE16], which uses R Stan [Tea18b]
for MCMC sampling.
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We report results as the distribution of posterior odds ratio esti-
mates for effects of disaggregation and disaggregation with mean
(relative to mean aggregation, which is the reference group in the
model). We report estimates for the model intercept, effect of trial
number, and sigma estimates for this and all subsequent models in
Supplemental Material. Rather than using p-values to judge which
effects are reliable, we present 95% Credible Intervals on estimated
coefficients (reported in text, henceforth CIs). To judge reliability
of effects in a way that is analogous to looking for significance, a
reader can look for whether these CIs include zero (indicating the
possibility of no effect), or equivalently for the logistic models, the
degree to which 95% CIs on the estimated odds ratios include one.
For example, the CI shown in Figure 6(b), for the disaggregation
condition, does not include zero though that for the disaggregation
with mean condition does.

Figure 6(a) presents the results of our accuracy model. While
both disaggregation and disaggregation with mean reduce accuracy
slightly on average (i.e., generalizations are 0.84x and 0.89x as ac-
curate) compared to mean aggregation, these effects are not reliable
(95% CIs on odds ratios include 1: [0.64, 1.1] and 2: [0.68, 1.2] re-
spectively).

To better understand whether accuracy rates are affected by the
nature of the data, we calculated accuracy by data-type combina-
tion. The one nominal, one quantitative variable data resulted in
the lowest accuracy rates for generalizations at 45.2% (95% CI:
[43.2, 47.1]). The two quantitative variables and univariate data-
types produced much higher accuracy rates at 79.7% (95% CI:
[77.9, 81.5]) and 82.9% (95% CI: [81.1, 84.6]) respectively. Exam-
ining generalizations for the more error prone nominal and quanti-
tative combination showed that many participants tended to focus
on pairwise differences between nominal values that were often not
supported in the population dataset.

3.4.3. Confidence

Our prompt, following [ZZZK18], asked participants to only re-
port “reliable generalizations that you would report to a superior
like a manager if this was your job, or that you might make deci-
sions based off of.” While others have interpreted generalizations
prompted in this way as being at least 95% confident [ZZZK18],
we found that participants were at least 90% confident for only 429
(24.7%) generalizations. For a portion of generalizations (7.0%),
participants provided confidence values of 0.

It is possible that participants were more liberal in reporting
generalizations when they realized they could report confidence as
well. Per our pregistration, we assessed confidence on only the first
trial. The results were very similar to the confidence trends across
all trials, with 27.9% reporting confidence ≥ 90, and 5.4% report-
ing confidence of 0.

As we might hope, participants were less confident on aver-
age when their generalization was incorrect, albeit only slightly
(between 1 and 5 points less confident out of 100). We observed
the largest disparity in confidence across accurate versus inaccu-
rate generalizations for views that only depicted a mean mark: 4.7
points less confident when they were incorrect vs 3.6 points less
confident in the disaggregated view and 1.8 points less in the dis-

aggregation view with means overlaid. Following our preregistra-
tion, we evaluated accuracy for generalizations filtered to only in-
clude confidence at some value k or above, allowing us to examine
whether confidence can be reliably thresholded across participants
to identify more accurate generalizations. However, we see little
change in accuracy levels when generalizations are thresholded by
confidence, possibly because confidence values are subject to indi-
vidual differences in how the participant assigns numeric values to
different levels of subjective belief, and may reflect other contex-
tual characteristics [Hul16].

We find some evidence that aggregation strategy has an effect,
albeit small, on confidence. In the mean aggregation condition,
participants reported an average confidence of 71.8% (95% CI:
70.2, 73.3). Participants reported an average confidence of 68.6%
(95% CI: 67.0, 70.2) for the disaggregation with means strategy
and 67.3% (95% CI: 65.0, 68.8) for the disaggregation strategy.

To investigate the effect of aggregation strategy on confidence
while taking into account the study design, we use a pre-registered
Bayesian hierarchical model while controlling for the random ef-
fects of participant ID and dataset ID. Our model estimate the mean
effect (β coefficients) of disaggregation and disaggregation with
mean annotation (both represented by dummy codes) as well as
trial number on a participant’s reported confidence. We again ap-
ply weakly regularizing identical Gaussian priors centered on 0 for
each effect (β; standard deviation of 5), and half Cauchy priors cen-
tered on 0 for the estimated variance for varying intercepts effects
(σ; standard deviation of 50).

Figure 6(b) presents posterior mean estimates for effects of both
disaggregation and disaggretation with mean relative to mean ag-
gregation. On average viewing a disaggregated visualization re-
duced confidence by 3.6 points (95% CI [-6.2, -1.0 ]). Viewing a
disaggregated with mean visualization reduced confidence on aver-
age by 1.9 points, though not reliably (95% CI [-4.4, 0.6]).

3.4.4. Reasoning about Quantities & Effect Magnitude

We coded 991 quantitative prediction generalizations mentioning
numeric estimates of variable values, and 211 effect magnitude gen-
eralizations mentioning the size of a relationship or difference be-
tween variables. When comparing the rate of these codes by ag-
gregation strategy, we see that in the mean aggregation condition
the percentage of quantitative predictions is sightly lower: 50.0%
of all mean aggregation generalizations were coded as quantitative
prediction; 58.0% for disaggregation with means; 61.6% for disag-
gregation.

Overall, participants were much less likely to refer to effect mag-
nitude than make quantitative predictions about single variables.
We observe similar rates of effect magnitude generalizations when
data is disaggregated by default: 3.0%, mean aggregated: 4.2%, and
disaggregated with means: 4.4%.

To assess these differences while accounting for subject and
dataset specific effects, we specified two (pre-registered) Bayesian
hierarchical binomial models identical to the model we used for
accuracy. However, this time we regressed the mean effects (β co-
efficients) on the probability that a generalization mentions Effect
Magnitude and makes a Quantitative Prediction, respectively. We
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used identical weakly regularizing priors for mean effects and stan-
dard deviations to those used in the accuracy model.

Figure 6(c) and Figure 6(d) present posterior odds ratio estimates
for effects of disaggregation and disaggregation with mean relative
to mean aggregation for effect magnitude and quantitative predic-
tions.

We find that relative to using only mean aggregation, using a
disaggregated view or a disaggregated view with mean reliably in-
creases the rate of quantitative predictions by 2.3x and 1.6x, re-
spectively (95% CIs: [1.6, 3.3], [1.1, 2.3]). More quantitative pre-
dictions in views that show disaggregated data is likely a result of
the greater number of possible inferences available when raw data
is plotted.

Using a disaggregated view made participants slightly less likely
to reference effect magnitude on average, but not reliably (0.61x
95% CI: [0.30, 1.2]). Relative to using only mean aggregation, us-
ing disaggregated data with a mean annotations made no real dif-
ference (0.97x; 95% CI [0.48, 1.9]). This is not surprising given
the low rates of effect magnitude generalizations across aggrega-
tion strategies.

In the process of coding generalizations for effect magnitude,
we observed that many described effects as either present or ab-
sent without mentioning magnitude, such as “There is/is not a re-
lationship between number of visits and education”. While state-
ments that suggest there is no effect could be interpreted as ef-
fect magnitude (e.g., predictions that the effect is 0), discussions of
the prevalence of dichotomous thinking among statistical reform-
ers [HFKJ06] would suggest that these statements are examples of
such black and white thinking about effects as simply present or
absent.

To better understand if dichotomous thinking was more likely
with one strategy than another, we conducted an exploratory analy-
sis. We explicitly all generalizations that mentioned either an effect
or the absence of an effect without any other description of mag-
nitude (e.g., “There is/is not a difference in number of visits based
on education.”). Rates of dichotomous generalizations were much
higher than rates of effect magnitude references: 29.7% for dis-
aggregation, 32.4% for disaggregation with mean, and 37.9% for
mean aggregation. To assess whether these rates differed reliably
by aggregation strategy while accounting for subject and dataset
specific effects, we specify an hierarchical model identical to our
model for effect magnitude where we instead predicted the propor-
tion of dichotomous generalizations. We found that indeed, relative
to mean aggregation both disaggregated and disaggregated with
mean views reduced the probability of dichotomous statements, by
0.43x and 0.57x, respectively (95% CIs:[0.32, 0.58], [0.42, 0.77]).
These results are exploratory, as we did not preregister the model.

3.5. Discussion of Results

Overall, we do not find evidence that accuracy rates differ by aggre-
gation strategy. Viewing a disaggregated view without an overlaid
mean did reduce confidence slightly, by an average of 3.6 points
over mean aggregation alone. Disaggregating data, with or with-
out an overlaid mean, increased how likely participants were to

make quantitative statements about single variables, roughly dou-
bling the rate on average relative to mean aggregation alone. Our
exploratory analysis provides evidence suggesting that disaggregat-
ing data, with or without an overlaid mean, may reduce the prob-
ability that a participant engages in dichotomous thinking about
effects by noting the presence or absence of a difference between
variables without any mention of effect size. A preregistered fol-
lowup is however necessary to confirm this, which we contribute in
Experiment 2.

There are several reasons that may explain less confident gener-
alizations with disaggregated views. In the absence of a mark sum-
marizing the mean, the participant must work harder to estimate
central tendency. This may result in a meta-cognitive realization of
the difficulty associated with the task, engendering deeper process-
ing as suggested by research in educational psychology [DOV11].
Similarly, participants who use disaggregated views may perceive
generalizations about distribution or variance (which are not sup-
ported by mean aggregation alone) as more complex than general-
izations about central tendency, and therefore feel less confident.
We see few differences however in the confidence reported across
different types of insights, suggesting the latter reason may be less
explanatory.

4. Experiment 2: Small Sample Size

The relatively large size (n=1000) of the sample participants
viewed in Experiment 1 may be behind the relatively consistent ac-
curacy rates across aggregation strategies: even if one has access to
only a mean to assess differences or make quantitative predictions,
a large normally distributed random sample may support relatively
accurate generalizations because it is likely to be representative of
the population. In experiment 2, we investigate whether our ob-
servations of generalization number, accuracy, and confidence are
robust to a small sample. We used an identical study design and
data and stimuli generation procedure to compare the generaliza-
tions of participants when exposed to stimuli depicting a smaller
sample size of 50 (see Figure 2 right).

4.1. Methods

With the exception of the following changes, the methods used in
our second experiment were identical to those used in the first.

4.1.1. Data Generation and Sample Size

We randomly sampled 50 records from the larger sample size of
1000. We used the same synthetic dataset for each participant, re-
sulting in a dataset of 50 samples with 12 total attributes (4 quan-
titative, 3 nominal, 5 ordinal), and 6 correlated attribute pairs (see
Data Generation).

Preregistration: We pre-registered our conditions, analysis (in-
cluding the coding and Bayesian analysis of dichotomous general-
izations) and data collection criteria on the Open Science Frame-
work (https://osf.io/zx7we/) before collecting any data.

4.1.2. Participants

We recruited 90 participants from MTurk, using the same criteria
in Experiment 1. We applied the same exclusion criteria, until we
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had a total of 90 complete sets of generalizations from participants
after exclusions. During the collection process, 4 participants were
excluded because more than half their generalizations consisted of
no generalizations and 8 were excluded because the majority of
their generalizations were not about the data they saw, per our pre-
registered exclusion criteria. We denied those who had previously
completed the experiment from retaking it. We did not exclude par-
ticipants based on statistical or chart familiarity. In an exit survey,
all 90 participants self-reported their familiarity with statistics on a
five point scale. Of these, three (3%) participants reported that they
“used statistics often or were experts”, six (7%) that they “took
[statistics] in college and sometimes use it”, 11 (11%) that they
“took it in college but rarely use statistics” and 70 (78%) that they
have “very little experience, and never took a course”. All 90 par-
ticipants reported their usage of “charts and graphs” on a five point
scale. Eight (9%) participants reported that they “never” use charts,
34 (38%) that they “rarely (less than once a month)” use charts,
29 (32%) they use charts “Sometimes (1-5 times per month)”, 16
(18%) “Often (1 - 5 times per week)”, and 3 (3%) participants use
charts “Very often (about everyday)”.

4.2. Results

We obtained 90 full sets of generalizations that passed our pre-
registered exclusion criteria. We omitted from analysis 12 partic-
ipants who completed the study but did not pass the pre-registered
criteria. The average time to complete the task was 24.1 min (sd:
12.5 min), with an average trial completion time of 120.9 sec (sd:
108.8 sec).

4.2.1. Generalization Frequency and Type

Participants submitted a total of 1,880 generalizations. Per our pre-
registration, we omitted 86 generalizations that did not appear to
be about the data or were misinterpretations of the visualizations
that were shown (24 disaggregated, 29 disaggregated with means,
33 mean), and 186 trials where the participant did not express any
generalization (68 disaggregated, 60 disaggregated with means, 58
mean). This process left us with 1,608 generalizations (86%).

We observed the fewest generalizations in the mean aggrega-
tion condition with 500 (31.1%), with the two disaggregated condi-
tions producing similar numbers (with mean: 558, 34.7%; without:
550, 34.2%). Relative to the number of generalizations produced
in Experiment 1, where the sample size was 20x larger, partici-
pants in the disaggregated and disaggregated with mean conditions
had slightly larger reductions in the amount of generalizations they
produced in Experiment 2: participants who viewed disaggregated
views produced 550 generalizations compared to 607 (9.4% less),
those who viewed disaggregated with mean views produced 558
generalizations vs 608 (8.2% less), and those who viewed mean
aggregated views produced 528 generalizations vs 500 (5.3% less).
Across data-type combinations we observed the most generaliza-
tions for a one nominal, one quantitative data-type combination
(646; 40.2%), followed by two quantitative variables(491; 30.5%)
and univariate data (471; 29.3%).

Of our generalizations in Experiment 2, 648 (40.3%) described
distribution shape, 420 (26.1%) described a mean or difference in

means, 276 (17.2%) described a correlation, 262 (16.3%) described
a rank, and only 2 (0.1%) concerned variance. As in Experiment 1,
we unsurprisingly observe more shape generalizations when data is
disaggregated by default (60.1% vs 43.9% for disaggregation with
means vs 13.6% for mean aggregation). When data includes some
mark for the mean, we observe more mean generalizations (10.3%
for disaggregated vs 45.4% for mean aggregation vs 24.4% for dis-
aggregation with means) and more rank generalizations (13.8% for
disaggregated vs 24.2% for mean aggregation vs 11.6% for dis-
aggregation with means). When analyzing the types of generaliza-
tions participants generated on only the first trial, we observe the
same ranking by frequency of generalization types.

4.2.2. Accuracy

Of the generalizations we analyzed, a lower proportion of 51.6%
were accurate compared to 66.4% in Experiment 1, suggesting that
not all participants were adequately sensitive to the relationship be-
tween sample size and estimate reliability. An average participant
was accurate for 52.4% of their generalizations, but this rate varied
greatly across participants (min: 12.9%, max: 85.7%, sd: 14.3%).

Accuracy rates were similar across aggregation strategies: disag-
gregated views produced a rate of 49.5%, mean aggregated views
producing a rate of 49.8%, and disaggregated with means overlaid
produced a rate of 53.2%.

We specified a Bayesian hierarchical binomial model identical to
that of Experiment 1 to assess accuracy by aggregation strategy. We
report results as the distribution of posterior odds ratio estimates.
Figure 7(a) presents the results of our accuracy model. While we
observed lower accuracy rates overall for Experiment 2, we again
find no reliable effect of aggregation strategy on accuracy.

In addition, we calculated accuracy by data-type combination.
We see the same pattern in Experiment 1: the one nominal, one
quantitative variable data-type combination produced a much lower
accuracy rate of 39.8% (95% CI: [38.1%, 41.5%]). Views that
display 2 quantitative variables produced a rate of 65.6% (95%
CI: [63.3%, 68.0%]), and univariate data-types produced a rate of
57.7% (95% CI: [55.4%, 60.0%]).

4.2.3. Confidence

We found that participants were at least 90% confident for 517
(32.1%) generalizations, and in 11 (0.7%) generalizations reported
a confidence of 0, similar rates to the results of Experiment 1.

To examine the effect of aggregation strategy on confidence, we
use the same pre-registered Bayesian hierarchical model for confi-
dence as in Experiment 1, controlling for the random effects of par-
ticipant ID and dataset ID. Figure 7(b) presents posterior mean es-
timates for effects of disaggregation and disaggregation with mean
conditions relative to the mean aggregation condition. On average,
viewing a stimulus in the disaggregated condition reduced confi-
dence by 5.9 points (95% CI [-8.4, -3.3]. Viewing a stimulus disag-
gregated with the mean overlaid reduced confidence on average by
0.7 points (95% CI [-1.9, 3.2]), though not reliably. These results
reflect a similar confidence pattern found in Experiment 1, where
the participants expressed less confidence when the mean mark is
not annotated.
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Figure 7: Posterior estimates in E2 of effects of aggregation strat-
egy on the probability that (a) a participant’s generalization is cor-
rect, (b) a participant reports lower confidence, (c) a participant’s
generalization expresses a quantitative prediction, (d) a partici-
pant’s generalization references effect magnitude and (e) a partici-
pant’s generalization references a dichotomous effect. Effects in all
models except confidence are expressed in terms of odds ratios rel-
ative to viewing a mean aggregation. Intercept and estimate effect
of trial are available in Supplemental Material.

Following the results of Experiment 1, we conduct a pre-
registered analysis of dichotomous thinking. Relative to Experi-
ment 1, we observe slightly higher rates of dichotomous general-
izations: 37.9% for disaggregation, 38.0% for disaggregation with
mean, and 55.2% with mean aggregation. We assessed the relia-
bility of these differences in aggregation strategy by specifying a
hierarchical model identical to our dichotomous model for Exper-
iment 1 (Figure 7(e)). We found that relative to mean aggregation,
views where data is disaggregated reliably reduced the probability
of dichotomous statements: disaggregation views were only 0.17x
(95% CI: [0.11, 0.24]) as likely to lead to dichotomous general-
izations and disaggregation with mean views were 0.18x (95% CI:
[0.12, 0.26]) as likely. These effects are consistent with, but larger
than, the corresponding reductions by 0.43x and 0.57x in Experi-
ment 1, suggesting that particularly when samples are small, plot-
ting disaggregated data can be an important way to signal caution
to untrained viewers.

5. Discussion

We set out to explore what sorts of generalization behaviors might
be affected by the use of different aggregation strategies among un-
trained users of visualizations. Several aspects of our results sug-
gest interesting avenues for future work around the impact of aggre-
gations on users’ confidence and the nature of their generalizations.

First, while aggregation strategy did not appear to significantly
affect accuracy rates, in both studies we observed that generaliza-
tions about combinations of a nominal variable and a quantitative
variable were considerably more likely to lead to inaccurate gener-
alizations than other combinations. Visualization system designers
may want to explore ways of warning viewers of such combinations
that while tempting to make, comparisons may not be reflective of
the population.

While we observed no reliable differences in accuracy, across
both a large (Experiment 1) and small (Experiment 2) sample, dis-
aggregating data without a mean mark led to less confidence in gen-
eralizations by 3 to 6 points on average. Considering well-known
biases like overconfidence [LFP81], more cautious conclusions are
likely to benefit analysts by helping them avoid false positives. That
said, given that the confidence scale we used was 100 points, the
size of this difference suggests that overconfidence is unlikely to
be completely offset aggregation strategy. Other debiasing strate-
gies may be needed.

We considered whether portraying an effect in dichotomous
“present or absent” terms (e.g., “there is an effect of ad campaign
on visits”), a type of thinking about effects that has been sharply
criticized in the wake of a replication crisis occurring in several
fields [HFKJ06], could be a useful metric for differentiating behav-
ior from aggregation strategies. Indeed, we found that the proba-
bility that a viewer would describe an effect in dichotomous terms
was only about one fifth to one half as high when they viewed a
disaggregated view rather than a single summary mark showing
the mean. Along the same lines, we saw a bigger reduction in the
number of generalizations produced between large and small sam-
ple when participants used disaggregated views relative to mean
aggregation only.
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These results shed some empirical light on Correll and Gle-
icher’s [CG15] question about how views that require ensemble
processing affect confidence in data. It appears that displaying
marks of mean aggregation pose a risk that untrained users will
overestimate the reliability of superficial generalizations in which
patterns either exist or do not. We find it promising that even when
users are relatively unfamiliar with statistics and visualization, they
appear to be sensitive to cues like sample size afforded by disag-
gregated views. When analysis settings are unlikely to involve very
large datasets and users may not be trained in analysis, using dis-
aggregation may lead to more conservative conclusions.

Our experiments intentionally traded off external validity for
control over the stimuli participants viewed and statistical power.
According to self-reported experience with statistics and visualiza-
tions, the majority of participants in our experiments were novices.
Future work should undertake study of how effect size interpreta-
tions manifest in realistic exploratory data analysis sessions with
users that range in experience. Given the increase in reliance on
data in a number of domains, further exploration into what fea-
tures of a visualization environment viewers are sensitive to and
how visualizations can best communicate effect size and support
estimation in more personalized ways is well warranted.

5.1. Evaluating Exploratory Data Analysis

Our work builds on Zgraggen et al.’s [ZZZK18] recent study of
how susceptible a group of student analysts were to the multiple
comparisons problem. Differences between our results and theirs
may provide insight into causes of inaccurate generalizations and
methodologies for studying bias in data-driven generalizations.

For instance, there is a considerable disparity between the false
positive rate observed in their study (73.8%) versus ours (33.0% to
34.2% or 41.0% to 49.3% depending on aggregation strategy and
sample size).

There are a number of reasons why our results may paint a more
positive picture of novice analysts’ false positive rates. First, we
conducted a controlled study in which participants did not gener-
ate views themselves. It is possible that confirmation bias causes
people to be more likely to identify effects (including unsupported
effects) in views that they generated themselves based on some
question or interest. We also embedded ground truth correlations
(which were always between 0.4 and 0.8 in the data we showed
participants), whereas Zgraggen et al.’s ground truth included any
non-zero correlation. It is possible that participants in their study
stated that variables with very small correlations were null effects
when in fact they were not. Their sample size was also significantly
smaller than ours, potentially contributing noise; they recorded a
total of 155 generalizations where we accumulated a total of 1,743
and 1,609 for experiment 1 and 2 respectively. Finally, an experi-
menter effect may have led their participants in their study to gener-
ate inferences simply because they thought that was what they were
expected to do. While this may also be true in our setting, the lack
of an in-person observer may have made our participants feel less
pressure to produce inferences for views where they did not see a
clear pattern.

Our results have implications for future studies of inference

through exploratory data analysis. That participants in our study
did not exhibit subjective confidence levels that matched the re-
quested level of reliability in our prompt suggests that it may not
be possible to prescribe a confidence level and expect analysts to
use it as a filter for their inferences. While the type of relative sub-
jective confidence that we elicited could potentially be compared
to results of a statistical test of an inference (see, e.g., [CG14]),
we believe that the ambiguity of confidence as a construct makes
confidence a noisy signal at best [HQC*19]. As an alternative, vi-
sualization researchers have suggested understanding threats to the
reliability of conclusions drawn during exploratory data analysis
more broadly as an example of Bayesian inference [HH18] or a
garden of forking paths in which “model overfitting” (overconfi-
dence in trends observed in a sample) can be mitigated using reg-
ularization or visual bias corrections [PK18]. Our experiment re-
sults lead us to believe that a better approach to evaluating the in-
tegrity of exploratory data analysis may be to elicit intervals for
any stated effects directly from the analyst. For example, if an an-
alyst describes a small effect of ad campaign on number of pur-
chases, they could be asked to describe their best guess of the size
of the effect as an interval. A challenge may arise if the analyst is
not accustomed to thinking about uncertainty intervals. However,
coarser (e.g., multiple choice) descriptions of potential effect sizes
are possible, or graphical elicitation interfaces similar to those in-
tended for gathering untrained users’ prior and posterior beliefs that
have recently been demonstrated as a means to evaluate visualiza-
tions [kim2019]. Importantly, more fine-grained approaches to rep-
resenting subjective probability could support more reliable testing
of inferences against a ground truth.

5.2. Limitations

Naturally, our study has some limitations, most notably that the
untrained participants we recruited from Mechanical Turk may be
less accustomed to working with data than the novice users of visu-
alization systems for which aggregation defaults are an important
choice. The visual marks used to convey the mean differ across our
three aggregation strategy conditions, with the mean aggregation
condition using a bar rather than a horizontal tick. It is possible
that this difference in mark contributed additional noise or bias. It
is also possible that our use of mean aggregation in two strategy
conditions made participants more likely to draw generalizations
about the mean. Comparing the first trial distribution across gen-
eralization types of disaggregation to the full trial results in Fig-
ure 5, it appears that with more trials, those viewing disaggregated
views did become more likely to report mean generalizations. The
breakdown of generalization types by aggregation strategy should
be taken as evidence of relative but not absolute differences. In ad-
dition, the methods we employed to translate generalizations into
testable statements of various types, while systematic and prereg-
istered, still have many degrees of freedom. The reported accuracy
levels should not be interpreted as absolute.

6. Conclusion

Little empirical work in visualization attempts to study how vi-
sual aggregation (or other visualization decisions) impact the types
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of conclusions people draw from summary visualizations. We pre-
sented the results of two pre-registered experiments that compare
statistically untrained visualization users’ generalizations made
from three different aggregation strategies: disaggregating the data,
mean aggregation of the data and disaggregating the data with mean
marks overlaid. Our results provide an initial characterization of
how aggregation strategy affects the number of, focus of, accuracy
of, and confidence of generalizations produced by untrained users.
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