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Visual Reasoning Strategies
for Effect Size Judgments and Decisions

Alex Kale, Matthew Kay, and Jessica Hullman

Fig. 1: Visualization designs evaluated in our experiment.

Abstract— Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual
comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual
distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight
uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with
and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude
estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least
biased effect size estimation do not support the best decision-making, suggesting that a chart user’s sense of effect size may not
necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users’ strategy descriptions,
we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which
are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics,
suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies.

Index Terms—Uncertainty visualization, graphical perception, data cognition

1 INTRODUCTION

Many visualization authors perceive visualizing uncertainty as an ex-
ception, rather than a norm [25]. However, the common practice of
omitting uncertainty information from visualizations and focusing at-
tention on point estimates leads to “incredible certitude” [38, 39], the
unwarranted impression that error is minimal or not important. To
enable informed judgments and decisions, a common suggestion is to
present uncertainty information alongside point estimates, for example,
by showing intervals in which estimates could fall [11, 12, 37, 52].

However, presenting uncertainty alongside point estimates may not
lead users to incorporate uncertainty information into their judgments.
A large body of work on biases due to heuristics (e.g., [30,54,55]), also
commonly known as satisficing [45], shows that people often avoid or
discount uncertainty information. This suggests that chart users may
ignore uncertainty in favor of means even when both are presented [26].

Different visualization design choices make the mean more or less
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salient. Imagine a continuum of uncertainty visualization designs
representing how perceptually difficult it is to decode the mean from a
chart. At one extreme are hypothetical outcome plots or HOPs [26, 33]
where the mean is only encoded implicitly as the average of a set
of outcomes presented across frames of an animation. At the other
extreme are direct encodings of point estimates presented alongside
uncertainty (e.g., represented as error bars). We expect that the salience
of the mean in uncertainty visualization designs and other factors such
as frequency-framing of probability [14,26,33,34] influence the degree
to which users focus on means and ignore uncertainty.

How might chart users who focus on means judge effect size? Imag-
ine a user viewing visualizations like those in Figure 1. Discounting
uncertainty may manifest as using distance between means or gist esti-
mates of distance between distributions as a proxy for effect size and
not judging distance relative to the width of distributions. Using only
distance as a proxy for effect size may be misleading (Fig. 2) because
the distance between distributions depends on a number of factors,
including the variance of distributions and the visualization author’s
choice of axis scale as noted by previous work [9, 21, 61].

We investigate a scenario where distance heuristics lead to a pre-
dictable pattern of bias in order to measure how different visualization
designs impact users’ reliance on distance as a proxy for effect size.
Users are shown charts depicting various effects on a fixed axis (Fig. 2)
such that when distributions have lower variance, visual distance be-
tween means is small regardless of effect size, but distances correspond
to effect size more consistently at higher variance. In this scenario, we
expect that adding means to uncertainty visualizations leads users to
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Fig. 2: Intervals with means showing two levels of effect size (72% and
95% Pr(S)) at low and high variance. Using visual distance between
means as a proxy for effect size should result in greater bias toward
underestimating effect size at lower variance than at higher variance.

underestimate effect size at lower variance. Conversely, adding means
may reduce this underestimation bias at higher variance.

We contribute a pre-registered experiment on Mechanical Turk in-
vestigating how uncertainty visualization design impacts lay users’
judgments and decisions from effect size. We find that visualization
designs which support magnitude estimation are not necessarily best
suited as decision aids. Quantile dotplots lead to the least bias in
magnitude estimation, but other visualizations lead to the least bias in
decision-making. On a fixed axis scale, densities without means support
unbiased decisions at lower variance, and users show substantial bias
with all visualizations at higher variance. Visualization effectiveness
for decision-making depends on the level of variance in data relative
to the axis scale. Adding means has a negligible impact on magnitude
estimation, but in most cases it leads to less utility-optimal decisions.

In a qualitative analysis of users’ strategy descriptions, we find
that few users apply the optimal strategy for reading an uncertainty
visualization when one exists. Instead, the majority of users appear
to satisfice [45] by using a small set of heuristics. We find that the
majority of users report relying on visual distance between distributions
regardless of uncertainty information, an observation that is consistent
with the biases in our quantitative results. We also find that many
users switch between strategies. This suggests that many uncertainty
visualizations may not be interpreted in ways that researchers and
designers expect, and characterizing possible strategies may lead to
design recommendations based on how users reason in practice.

2 BACKGROUND: VISUALIZING UNCERTAINTY

In communicating the results of statistical analysis, visualization au-
thors commonly represent uncertainty as a range of possible values as
recommended by numerous experts (e.g., [11, 37, 52]). Other conven-
tional uncertainty representations commonly used in statistical analysis
include aggregate encodings of distributions such as boxplots [53],
histograms [42], and densities [2, 48]. Frequency-based uncertainty
visualizations build on a large body of work suggesting that fram-
ing probabilities as frequencies of events improves statistical reason-
ing [6, 14, 16, 17, 20, 22, 26, 33, 34, 36, 41]. These include hypothetical
outcome plots (HOPs) [26], which encode possible outcomes as frames
in an animation, and quantile dotplots [34], which quantize a distribu-
tion of possible outcomes and represent each quantile as a discrete dot.
A growing body of work suggests that lay and expert audiences com-
monly misinterpret interval representations of uncertainty [3,19,47] and
that other uncertainty visualization formats such as gradient plots [10],
violin plots [10, 26], HOPs [26, 33], and quantile dotplots [14, 34] lead
to more accurate interpretation and performance on various tasks.

In our study, we compare two frequency-based visualizations, quan-
tile dotplots and HOPs, with two more conventional uncertainty rep-
resentations, intervals and densities. By testing each with and without
added means, we investigate the extent to which users of these uncer-
tainty visualizations differ in their tendency to ignore uncertainty.

When chart users don’t know how to interpret uncertainty, prior
work [26] suggests that they may substitute a judgment of the mean
difference between distributions for more complicated judgments about
the reliability of effects. This visual distance heuristic motivates de-
sign principles, for example, that the quantitative axis on a bar chart
should always start at zero [4,24], or that axis scales should align visual
distance with effect size [61]. Axis scale impacts the perceived im-
portance of effect size regardless of chart type (e.g., lines versus bars)
and despite attempts to signal that an axis does not start at zero (e.g.,
breaking the axis) [9]. Rescaling the axis on a chart that displays infer-
ential uncertainty (e.g., 95% confidence intervals) to the scale implied
by descriptive uncertainty (e.g., 95% predictive intervals) can reduce
bias in impressions of effect size [21]. In our study, we investigate the
visual distance heuristic by asking users to compare distributions with
different levels of variance on a common scale (Fig. 2).

3 METHOD

We tested how adding means to different uncertainty visualizations
impacts users’ estimates and incentivized decisions from effect size.

3.1 Tasks & Procedure
Our task was like a fantasy sports game. We showed participants charts
comparing the predicted number of points scored by their team with
and without adding a new player (e.g., Fig. 2). Participants estimated
the effect size of adding the new player and decided whether or not to
pay to add the new player to their team.

Effect Size Estimation: We asked participants to estimate a mea-
sure of effect size called probability of superiority or common language
effect size [40]: “How many times out of 100 do you estimate that your
team would score more points with the new player than without the
new player?” We elicited probabilities as “times out of 100” based on
literature in statistical reasoning (e.g., [17, 20]) suggesting that people
reason more accurately with probabilities when they are framed as
frequencies. Probability of superiority, the percent of the time that
outcomes for one group A exceed outcomes for another group B, is a
proxy for standardized mean difference µA−µB

σA−B
[8, 13], the difference

between two group means relative to uncertainty in the estimates. Us-
ing synthetic data (see Section 3.5), we evaluated bias in effect size
estimates compared to a known ground truth.

Intervention Decisions: We also asked participants to make binary
decisions indicating whether they would “Pay for the new player,” or

“Keep [their] team without the new player.” On each trial, the partici-
pant’s goal was to win an award worth $3.17M, and they could pay $1M
to add a player to their team if they thought the new player improved
their chances of winning enough to be worth the cost. There were four
possible payouts in each trial:

1. The participant won without paying for a new player (+$3.17M).
2. The participant paid for a new player and won (+$2.17M).
3. They failed to win without paying for a new player ($0).
4. The participant paid for a new player and failed to win (-$1M).

The user could only lose money if they paid for the new player.1 We set
up the incentives for our task so that a risk-neutral chart user should pay
for a new player only when effect size was larger than 74% probability
of superiority or Cohen’s d of 0.9, the average effect size in a recent
survey of studies in experimental psychology [44]. This enabled us to
evaluate intervention decisions compared to a utility-optimal standard.

Feedback: At the end of each trial we told users whether or not
their team scored enough points to win an award, using a Monte Carlo
simulation to generate a win or loss based on the participant’s decision.

1In pilot studies, we tested how framing outcomes as winning versus losing
awards impacted user behavior and found that participants had greater preference
for intervention when it was described as increasing the certainty of gains,
consistent with prior work by Tversky and Kahneman [31, 55].
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We split feedback into two tables. One showed the change in account
value for the current trial. The other showed cumulative account value
and how this translated into a bonus in real money. By showing proba-
bilistic outcomes, instead of the expected value of decisions, feedback
gave participants a noisy signal of how well they were doing, mirroring
real-world learning conditions for decisions under uncertainty.

Payment: Participants received a guaranteed reward of $1 plus a
bonus of $0.08 · (account − $150M), where $0.08 per $1M was the
exchange rate from account value to real dollars, account was the value
of their fantasy sports account at the end of the experiment, and $150M
was a cutoff account value below which they receive no bonus. These
values were carefully chosen to result in bonuses between $0 and $3,
such that participants who guessed randomly and experienced unlucky
probabilistic outcomes would receive no bonus, and participants who
responded optimally would be guaranteed a bonus.

User Strategies: To supplement our quantitative measures with
qualitative descriptions of users’ visual reasoning, at the end of each of
the two block of trials, we asked users, “How did you use the charts to
complete the task? Please do your best to describe what sorts of visual
properties you looked for and how you used them.”

3.2 Formalizing a Class of Decision Problems
Our decision task represents a class of decision problems where one
makes a binary decision about whether or not to invest in an intervention
that changes the probability of an all-or-nothing outcome. For example,
this class of problems includes medical decisions about treatments that
may save someone’s life or cure them of a disease, organizational deci-
sions about hiring personnel to reach a contract deadline, and personal
decisions such as paying for education to seek a promotion. Previous
decision-making literature examines similar problems in the context
of salting the road in freezing weather [28, 29], voting in presidential
elections [59], and willingness to pay for interventions in a fictional
scenario [21]. The key similarity between these decision problems is
that their incentive structures imply a common utility function.

A utility function defines optimal (i.e., utility maximizing [57])
decisions for a risk-neutral observer, providing a normative benchmark
used to measure bias in decision-making. Comparing behavior to a
risk-neutral benchmark is a common practice in judgment and decision-
making studies [1], often used to measure risk preferences [58] or
attitudes that make a person more or less inclined to take action than
they should be based on a cost-benefit analysis. In the class of decision
problems we investigate, the implied utility function depends on both
the amount of money one stands to win or lose (e.g., the value of
an award and the cost of a new player) and the effect size (e.g., the
difference in team performance with versus without a new player).

Let v be the value of an award. Let c be the cost of adding a new
player to the team. The utility-optimal decision rule is to intervene if

v ·Pr(award|¬player)< v ·Pr(award|player)− c
where Pr(award|¬player) is the probability of winning an award with-
out a new player, and Pr(award|player) is the probability of winning
an award with a new player. Assuming a constant ratio between the
value of the award and the cost of intervention k = v

c , we express the
decision rule in terms of the difference between the probabilities of
winning an award with versus without a new player:

Pr(award|¬player)+
1
k
< Pr(award|player)

The threshold level of effect size above which one should intervene
depends on the incentive ratio k and the probability of a payout without
intervention Pr(award|¬player). In our study, we fixed the incentives
k = 3.17 and the probability of winning an award without a new player
Pr(award|¬player) = 0.5 so that users would not have to keep track
of changing incentives, and effect size alone was the signal that users
should base decisions on.2 This enabled a controlled evaluation of

2In pilot studies, we tried manipulating k and Pr(award|¬player) and found
that these changes had little impact on the effectiveness of different uncertainty
visualizations for supporting utility-optimal decision-making. In light of prior
work showing that Mechanical Turk workers do not respond to changes of
incentives [50], we suspect that these manipulations might have an impact in

how users translate visualized effect size into a sense of utility. By
modeling a functional relationship between effect size and utility, we
go beyond prior work which either does not vary the effectiveness of
interventions (e.g., [28, 29, 59]) or examines only two levels of effect
size as a robustness check for statistical tests (e.g., [21]).

3.3 Experimental Design

We assigned each user to one of four uncertainty visualization con-
ditions at random, making comparisons of uncertainty visualizations
between-subjects. On each trial, users made a probability of superi-
ority estimate and an intervention decision. We asked users to make
repeated judgments for two blocks of 16 trials each. In one block, we
showed the users visualizations with means added, and in the other
block there were no means. We counterbalanced the order of these
blocks across participants. Each of the 16 trials in a block showed a
unique combination of ground truth effect size (8 levels) and variance
of distributions (2 levels), making our manipulations of ground truth,
variance, and adding means all within-subjects. The order of trials in
each block was randomized. In the middle of each block, we inserted an
attention check trial, later used to filter participants who did not attend
to the task. Users always saw an attention check at 50% probability
of superiority with means and at 99.9% without means. Hence, each
participant completed 17 trials per block and 34 trials total.

3.4 Uncertainty Visualization Conditions

We evaluated visualizations intended to span a design space character-
ized by the visual salience of the mean, expressiveness of uncertainty
representation, and discrete versus continuous encodings of probabil-
ity. As described above, we showed four uncertainty visualization
formats—intervals, hypothetical outcome plots (HOPs), density plots,
and quantile dotplots—with and without separate (i.e., extrinsic) ver-
tical lines encoding the mean of each distribution. We expected that
adding means would bias effect size estimates toward discounting un-
certainty and that this effect would be most pronounced for uncertainty
visualizations in which the mean is not intrinsically salient.

Intervals: We showed users intervals representing a range contain-
ing 95% of the possible outcomes (Fig. 1, left column). In the absence
of a separate mark for the mean, the mean was not intrinsically encoded,
and the user could only find the mean by estimating the midpoint of the
interval. Intervals were not very expressive of probability density since
they only encoded lower and upper bounds on a distribution.

Hypothetical Outcome Plots (HOPs): We showed users animated
sequences of strips representing 20 quantiles sampled from a distribu-
tion of possible outcomes (Fig. 1, left center column), matching the data
shown in quantile dotplots. Animations were rendered at 2.5 frames per
second with no animated transitions (i.e., tweening or fading) between
frames, looping every 8 seconds. We shuffled the two distributions of
20 quantiles using a 2-dimensional quasi-random Sobol sequence [46]
to minimize the apparent correlation between distributions. Like inter-
vals, HOPs did not make the mean intrinsically salient, as means were
implicitly encoded as the average position of an ensemble of strips
shown over time. However, HOPs were more expressive of the underly-
ing distribution than intervals and expressed uncertainty as frequencies
of events, so they conveyed an experience-based sense of probability.

Densities: We showed users continuous probability densities where
the height of the area marking encoded the probabilities of correspond-
ing possible outcomes on the x-axis (Fig. 1, right center column). Un-
like intervals and HOPs, the mean was explicitly represented as the
point of maximum mark height because distributions were symmetri-
cal, so means were intrinsically salient. Densities were also the most
expressive of the underlying probability density function among the
uncertainty visualizations we tested.

Quantile Dotplots: We showed users dotplots where each of 20 dots
represented a 5% chance of a corresponding possible outcome on the
x-axis (Fig. 1, right column). Like densities, because distributions were
symmetrical and dots were stacked in bins to express this symmetry,

real-world settings which is difficult to measure on crowdsourcing platforms.
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the mean was explicitly represented as the point of maximum height
and was thus intrinsically salient.

3.5 Generating Stimuli
We generated synthetic data covering a range of effect size, so there
were an equal number of trials where users should and should not in-
tervene. Recall that 50% corresponded to a new player who did not
improve the team’s performance at all, 100% corresponded to a definite
improvement in performance, and 74% was the utility-optimal decision
threshold. We sampled eight distinct levels of ground truth probabil-
ity of superiority, four values between 55% and 74% and four values
between 74% and 95%, such that there are an equal number of trials
above and below the utility-optimal decision threshold. Prior work in
perceptual psychology [18, 62] suggests that the brain represents proba-
bility on a log odds scale. For this reason, we converted probabilities
into log odds units and sampled on this logit-transformed scale using
linear interpolation between the endpoints of the two ranges described
above. We added two attention checks at probabilities of superiority of
50% and 99.9%, where the decision task should have been very easy,
to allow for excluding participants who were not paying attention.

To derive the visualized distributions from ground truth effect size,
we made a set of assumptions. We assumed equal and independent
variances for the distributions with and without a new player σ2

team
such that σ2

di f f = 2σ2
team where σ2

di f f was the variance of the difference
between distributions. We tested two levels of variance, setting the
standard deviation of the difference between distributions σdi f f to a low
value of 5 or a high value of 15. These levels produced distributions
that looked relatively narrow or wide compared to the width of the
chart, making visual distance between distributions an unreliable cue
for effect size such that at low variance large effect sizes corresponded
to distributions that looked close together.

We determined the distance between distributions, or mean differ-
ence µdi f f , using the formula µdi f f = d ·σdi f f where d were ground
truth values as standardized mean differences (i.e., Cohen’s d [8, 13]).
The mean number of points scored without the new player was held
constant µwithout = 100, which corresponded to a 50% chance of win-
ning the award. We calculated mean for the team with a new player
µwith = µwithout + µdi f f . We rendered our chart stimuli using the pa-
rameters µwith, µwithout , and σteam to define the two distributions on
each chart. Holding the chance of winning without a new player con-
stant at 50% (Fig. 2, blue distributions) is an experimental control that
enables us to compare a user’s preference for new players across trials
using a coin flip gamble as the alternative choice, which is common in
judgment and decision-making studies [1].

3.6 Modeling
We wanted to measure how much users underestimate effect size in
their probability of superiority responses, how much they deviate from
a utility-optimal criterion in their decisions, and how sensitive they
are to effect size for the purpose of decision-making. To measure
underestimation bias, we fit a linear in log odds model [18, 62] to
probability of superiority responses, and we derive slopes describing
users’ responses as a function of the ground truth (Fig. 3). To measure
bias and sensitivity to effect size in decision-making, we fit a logistic
regression to intervention decisions, and we derive points of subjective
equality and just-noticeable differences describing the location and
scale of the logistic curve as functions of effect size (Fig. 4).

3.6.1 Approach
We used the brms package [5] in R to build Bayesian hierarchical
models for each response variable: probability of superiority estimates
and decisions of whether or not to intervene. We started with simple
models and gradually added predictors, checking the predictions of
each model against the empirical distribution of the data. This process
of model expansion [15] enabled us to understand the more complex
models in terms of how they differ from simpler ones.

We started with a minimal model, which had the minimum set of
predictors required to answer our research questions, and built toward a
maximal model, which included all the variables we manipulated in our

experiment. We specified the minimal and maximal models for each
response variable in our preregistration.3

Expanding models gradually helped us determine priors one-at-a-
time. Each time we added a new kind of predictor to the model (e.g., a
random intercept per participant), we honed in on weakly informative
priors using prior predictive checks [15]. We centered the prior for each
parameter on a value that reflected no bias in responses. We scaled each
prior to avoid predicting impossible responses and to impose enough
regularization to avoid issues with convergence in model fitting. We
documented priors and model expansion in Supplemental Materials.4

3.6.2 Linear in Log Odds Model

We use the following model (Wilkinson-Pinheiro-Bates notation [5, 43,
60]) for responses in the probability of superiority estimation task:
logit(responsePr(S))∼Normal(µ,σ)

µ =logit(truePr(S))∗means∗ var ∗ vis∗order
+logit(truePr(S))∗ vis∗ trial

+
(
logit(truePr(S))∗ trial +means∗ var

∣∣worker
)

log(σ) =logit(truePr(S))∗ vis∗ trial
+means∗order
+
(
logit(truePr(S))+ trial

∣∣worker
)

Where responsePr(S) is the user’s probability of superiority response,
truePr(S) is the ground truth probability of superiority, trial is an index
of trial order, means is an indicator for whether or not extrinsic means
are present, var is an indicator for low versus high variance, vis is a
dummy variable for uncertainty visualization condition, order is an
indicator for block order, and worker is a unique identifier for each
participant used to model random effects. Note that there are submodels
for the mean µ and standard deviation σ of user responses.

Motivation: We apply a logit-transformation to both responsePr(S)
and truePr(S), changing units from probabilities of superiority into log
odds, because prior work suggests that the perception of probability
should be modeled as linear in log odds (LLO) [18, 62]. We model
effects on both µ and σ because we noticed in pilot studies that the
spread of the empirical distribution of responses varies as a function of
the ground truth, visualization design, and trial order. However, we are
most interested in effects on mean response. The term logit(truePr(S))∗
means ∗ var ∗ vis ∗ order tells our model that the slope of the LLO
model varies as a joint function of whether or not means were added,
the level of variance, uncertainty visualization, and block order (i.e., all
of these factors interacted with each other). This enables us to answer
our core research questions, while controlling for order effects. The
term logit(truePr(S))∗ vis∗ trial models learning effects, so we isolate
the impact of uncertainty visualizations. In both submodels, we added
within-subjects manipulations as random effects predictors as much as
possible without compromising model convergence.

3.6.3 Logistic Regression

We use this model to make inferences about intervention decisions:
intervene∼Bernoulli(p)

logit(p) =evidence∗means∗ var ∗ vis∗order
+evidence∗ vis∗ trial
+
(
evidence∗means∗ var+ evidence∗ trial

∣∣worker
)

Where intervene is the user’s choice of whether or not to intervene,
p is the probability that they intervene, and evidence is a logit-
transformation of the utility-optimal decision rule (see Section 3.2):

evidence = logit(Pr(award|player))− logit(Pr(award|¬player)+
1
k
)

This gives us a uniformly sampled scale of evidence where zero rep-
resents the utility-optimal decision threshold. All other factors are the
same as in the LLO model (see Section 3.6.2).

3https://osf.io/9kpmb
4https://github.com/kalealex/effect-size-jdm
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Fig. 3: Linear in log odds (LLO) model: fits for average user of quantile
dotplots and intervals compared to a range of possible slopes (top);
predictive distribution and observed responses for one user (bottom).

Motivation: We logit-transform our evidence scale because internal
representations of probabilities are thought to be on a log odds scale [18,
62], such that linear changes in log odds appear similar in magnitude.
The term evidence ∗means ∗ var ∗ vis ∗ order tells our model that the
location and scale of the logistic curve vary as a joint function of
whether or not means were added, the level of variance, uncertainty
visualization, and block order. Mirroring an analogous term in the LLO
model, this enables us to answer our core research questions, while
controlling for order effects. The term evidence ∗ vis ∗ trial models
learning effects. As with the LLO model, we specify random effects
per participant through model expansion by trying to incorporate as
many within-subjects manipulations as possible.

3.7 Derived Measures
From our models, we derive estimates for three preregistered metrics
that we use to compare visualization designs.

Linear in log odds (LLO) slopes measure the degree of bias in
probability of superiority Pr(S) estimation (Fig. 3). A slope of one
indicates unbiased performance, and slopes less than one indicate
the degree to which users underestimate effect size.5 We measure
LLO slopes because they are very sensitive to the expected pattern
of bias in responses, giving us greater statistical power than simpler
measures like accuracy. Specifically, LLO slope is the expected in-
crease in a user’s logit-transformed probability of superiority esti-
mate, logit(responsePr(S)), for one unit of increase in logit-transformed
ground truth, logit(truePr(S)). Using a linear metric (i.e., slope in logit-
logit space) to describe an exponential response function in probability
units comes from a theory that the brain represents probabilities on a
log odds scale [18, 62]. The LLO model [18, 62] can be thought of as a
generalization of the cyclical power model [23] that allows a varying
intercept or a modification of Stevens’ power law [49] for proportions.

5LLO slopes less than one represent bias toward the probability at the inter-
cept, logit−1(intercept), which is close to Pr(S) = 0.5 in our study.

Fig. 4: Logistic regression fit for one user. We derive point of subjec-
tive equality (PSE) and just-noticeable difference (JND) by working
backwards from probabilities of intervention to levels of evidence.

Points of subjective equality (PSEs) measure bias toward or
against choosing to intervene in the decision task relative to a utility-
optimal and risk-neutral decision rule (see Section 3.2). PSEs describe
the level of evidence at which a user is expected to intervene 50% of
the time (Fig. 4). A PSE of zero is utility-optimal, whereas a negative
value indicates that a user intervenes when there is not enough evidence,
and a positive value indicates that a user doesn’t intervene until there
is more than enough evidence. In our model, PSE is −intercept

slope where
slope and intercept come from the linear model in logistic regression.

Just noticeable-differences (JNDs) measure sensitivity to effect
size information for the purpose of decision-making (Fig. 4). They
describe how much additional evidence for the effectiveness of an inter-
vention a user needs to see in order to increase their rate of intervening
from 50% to about 75%. A JND in evidence units is a difference in the
log probability of winning the award with the new player. We chose
this scale for statistical inference because units of log stimulus intensity
are thought to be approximately perceptually uniform [49, 56]. In our
model, JND is logit(0.75)

slope where slope is the same as for PSE.

3.8 Participants
We recruited users through Amazon Mechanical Turk. Workers were
located in the US and had a HIT acceptance rate of 97% or more. Based
on the reliability of inferences from pilot data, we aimed to recruit 640
participants, 160 per uncertainty visualization. We calculated this target
sample size by assuming that variance in posterior parameter estimates
would shrink by a factor of roughly 1√

n if we collected a larger data
set using the same interface. Since we based our target sample size on
between-subjects effects (e.g., uncertainty visualization), our estimates
of within-subjects effects (e.g., adding means) were very precise.

We recruited 879 participants. After our preregistered exclusion
criterion that users needed to pass both attention checks, we slightly
exceeded our target sample size with 643 total participants. However,
we had issues fitting our model for an additional 21 participants, 17 of
whom responded with only one or two levels of probability of superi-
ority and 4 of whom had missing data. After these non-preregistered
exclusions, our final sample size was 622 (with block order counterbal-
anced). All participants were paid regardless of exclusions, on average
receiving $2.24 and taking 16 minutes to complete the experiment.

3.9 Qualitative Analysis of Strategies
Using the two strategy responses we elicited from each user, we con-
ducted a qualitative analysis to characterize users’ visual reasoning
strategies based on heuristics they used with different visualization
designs (with and without means) and whether they switched strategies.

The first author developed a bottom-up open coding scheme for how
users described their reasoning with the charts. Since some responses
were uninformative about what visual properties of the chart a user
considered (e.g., “I used the charts to estimate the value added by the
new player.”), we omitted participants for whom both responses were
uninformative from further analysis. Excluding 180 such participants
resulted in a final sample of 442 for our qualitative analysis.

We used our open codes to develop a classification scheme for
strategies based on what visual features of charts users mentioned,
whether they switched strategies, and whether they were confused by
the chart or task. We coded for the following uses of visual features:

• Relative position of distributions
• Means, whether users relied on or ignored them
• Spread of distributions, whether users relied on variance, ignored

it, or erroneously preferred high or low variance
• Reference lines, whether users relied on imagined or real vertical

lines (e.g., the annotated decision threshold in Fig. 1 & 2)
• Area, whether users relied on the spatial extent of geometries
• Frequencies, whether users of quantile dotplots or HOPs relied

on frequencies of dots or animated draws
Thus, we generated a spreadsheet of quotes, open codes, and categorical
distinctions which enabled us to provide aggregate descriptions of
patterns and heterogeneity in user strategies.
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4 RESULTS

4.1 Probability of Superiority Judgments
For each uncertainty visualization, adding means at low variance 
decreases LLO slopes. Recall that a slope of one corresponds to no 
bias, and a slope less than one indicates underestimation. When we 
average over uncertainty visualizations, adding means at low 
variance reduces LLO slopes for the average user, indicating a very 
small 0.8 percentage points increase in probability estimation error.

At high variance, the effect of adding means changes directions 
for different uncertainty visualizations. Adding means decreases 
LLO slopes for HOPs, whereas adding means increases LLO slopes 
for intervals and densities. Because differences in LLO slopes 
represent changes in the exponent of a power law relationship, these 
slope differences of similar magnitude indicate a very small increase 
in probability of superiority estimation error of 0.3 percentage points 
for HOPs and small reductions in error of about 1.5 and 1.0 percent-
age points for intervals and densities, respectively.

Users of all uncertainty visualizations underestimate effect size. 
When we average over variance, users show an average estimation 
error of 8.6, 14.0, 14.8, and 12.4 percentage points in probability of 
superiority units for quantile dotplots, HOPs, intervals, and densities, 
respectively, each without means. In this marginalization, adding 
means only has a reliable impact on LLO slopes for HOPs, but the 
difference is practically negligible.

4.2 Intervention Decisions
4.2.1 Points of Subjective Equality
For each uncertainty visualization, adding means at low variance 
increases PSEs. This results in different effects depending on whether 
the visualization with no means has a PSE below or above utility-op-
timal. Recall that a PSE of zero is utility-optimal, a negative PSE 
indicates intervening too often, and a positive PSE indicates not 
intervening often enough. Users of quantile dotplots with no means 
have negative PSEs which become unbiased when we add means. 
Users of HOPs and intervals with no means have positive PSEs,  
biases which increase when we add means. Users of densities with 
no means have PSEs near zero and become more biased when we 
add means. Only the effect for quantile dotplots is reliable. When we 
average over uncertainty visualizations, at low variance the 
average user may have a PSE 0.6 percentage points above utility-opti-
mal with no means, and adding means increases this mild bias by 
about 1.7 percentage points in terms of the probability of winning.

At high variance, adding means decreases PSEs. Since PSEs for 
all uncertainty visualizations with no means are below optimal, 
adding means increases biases in all conditions, however, the effect 
is only reliable for intervals. When we average over uncertainty 
visualizations, at high variance the average user has a negative PSE 
9.5 percentage points below utility-optimal with no means, and 
adding means increases this bias by about 2.1 percentage points.

4.2.2 Just-Noticeable Differences
At low and high variance, the effects of adding means on JNDs are 
mostly unreliable. Recall that smaller JNDs indicate that a user is 
sensitive to smaller differences in effect size for the purpose of 
decision-making. Adding means only has a reliable effect on JNDs 
for intervals at high variance, where it reduces JNDs by 1.2 percent-
age points in terms of the probability of winning.

When we average over variance, quantile dotplots with means 
lead to the smallest JNDs, and users of HOPs with or without means 
have the largest JNDs, a difference of about 1 percentage point in 
terms of the probability of winning. Quantile dotplots with or 
without means have reliably smaller JNDs than other conditions, 
with the exception of unreliable differences between quantile dotplots 
with no means and densities with or without means.

*Probability densities of model estimates show posterior distribu-
tions of means conditional on the average participant.
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4.3 Discussion
Among the uncertainty visualizations we tested, quantile dotplots lead
to the least biased probability of superiority estimates. This is not
surprising given previous work (e.g., [17, 20, 26, 33, 34]) showing that
frequency-based visualizations are effective at conveying probabilities.
However, it is surprising that users do not perform reliably differently
with frequency-based HOPs than with intervals or densities. HOPs
directly encode probability of superiority by how often the draws from
the two distributions change order, whereas in all other conditions users
would need to calculate effect size analytically from visualized means
and variances to arrive at the “correct” inference, although we doubt
that users engage in such explicit mathematical reasoning. In Section
5, we present descriptive evidence of heuristics that users employ with
different visualization designs, which helps to explain these results.

In most cases, the small effects on LLO slopes when adding means
to uncertainty visualizations are probably negligible. However, they are
consistent with the pattern of behavior we expect if users rely on visual
distance between distributions as a proxy for effect size. When variance
is lower relative the axis scale, distances between distributions look
small even for large effects (Fig. 2, top), and users tend to underestimate
effect size more when means are added. When variance is higher rela-
tive the axis scale, distances between distributions roughly correspond
to effect size (Fig. 2, bottom), and users tend to underestimate effect
size less when means are added, at least for densities and intervals.

Our results suggest that the best visualization design for utility-
optimal decision-making probably depends on the level of variance
relative to the axis scale. At lower variance, when multiple levels of
variance are shown on a common scale, densities without means or
quantile dotplots with means lead to the least bias in decisions. At
higher variance, users are biased toward intervening in all conditions,
and both densities without means and intervals without means lead to
the least bias. The impact of means also depends on variance and axis
scaling, such that when we average across uncertainty visualizations,
adding means exacerbates biases that exist when means are absent.
The effect of variance on PSEs (see Supplemental Materials) is large,
such that users intervene more often at higher variance than at lower
variance. One possible explanation for this is that users rely on distance
between distributions as a proxy for effect size and make decisions as
if effects are larger when distributions are further apart (Fig. 2).

Reported effects of visualization design on JNDs may not be practi-
cally important. All differences in JNDs between visualization designs
are smaller than the difference between high versus low variance (see
Supplemental Material). Smaller JNDs at high variance may reflect the
fact that our high variance charts use white space more efficiently.

4.4 Comparing Magnitude Estimation & Decision-Making

Fig. 5: PSEs and JNDs
vs LLO slopes per user.

Fig. 6: JNDs vs PSEs.

Different visualization designs lead to the
best performance on our magnitude esti-
mation and decision-making tasks. To ex-
plore this decoupling of performance across
tasks, we calculate average posterior esti-
mates of our derived measures—LLO slope,
PSE, and JND—for each individual user
and compare them. Figure 5 shows that
many individuals who are poor at magni-
tude estimation (i.e., LLO slopes below
one) do well on the decision task (i.e., PSEs
and JNDs near zero).

One possible explanation for this decou-
pling of performance on our two tasks is
that users may rely on different heuristics
to judge the same data for different pur-
poses. This is consistent with Kahneman
and Tversky’s [31] distinction between per-
ceiving the probability of an event to be p
and weighting the probability of an event
in decision-making as π(p), which sug-
gests that decision weights reflect prefer-
ences based on probabilities and risk atti-

tudes [58]. Recent work in behavioral economics [35] suggests that
biases in decision-making are partially attributable to imprecision in an
individual’s subjective perception of numbers (i.e., “number sense”).
Since JNDs reflect the precision of perceived effect size implied by
one’s decisions and PSEs represent bias in decision-making, we can
investigate this relationship within individual users in our study (Fig 6).
In agreement with prior work, we see that greater sensitivity to effect
size for decision-making (i.e., JNDs close to zero) predicts more utility-
optimal decisions (i.e., PSEs close to zero). Although, based on the
decoupling of LLO slopes and JNDs, it also seems clear that a user’s
internal sense of effect size is not necessarily identical when they use
the same information for different tasks. We should be mindful that per-
ceptual accuracy may not feed forward directly into decision-making.

5 VISUAL REASONING STRATEGIES

We use qualitative analysis of reported strategies to identify ways that
users judge effect size by comparing distributions, giving us a vocabu-
lary for how visualization design choices impact their interpretations.

5.1 Prevalent Strategies
The strategies we identify are not mutually exclusive. We count a user
as employing a strategy if they mention it in either of their responses.

Only Distance: About 62% of users (275 of 442) rely on “how far
to the right” the red distribution is compared to the blue one without
mentioning that they incorporate the variance of distributions into their
judgments (Fig. 2). Roughly 69% of these users (190 of 275) describe
making a gist estimate of distance between distributions, with 46% (126
of 275) saying they rely on the mean difference specifically, and 13%
(36 of 275) saying they rely on both gist distance and mean difference.
Strategies which involve only the distance between distributions should
result in a large bias toward underestimating effect size, which is what
we see in our aggregated quantitative results.

Distance Relative to Variance: Only about 8% of users (35 of 442)
mention that their interpretations of distance depend on the spread
of distributions, suggesting that perhaps very few untrained users are
sensitive to the impact of variance on effect size. If users estimate
standard deviation and mean difference between distributions, they
could use this information to calculate effect size analytically. However,
we think it is far more likely that these users judge the distance between
distributions relative to the spatial extent of uncertainty visualizations,
which should result in underestimation bias which is similar to but less
pronounced than with judgments of only distance.

Fig. 7: Cumulative
probability strategy
with quantile dotplots.

Fig. 8: Overlap strategy
with densities.

Cumulative Probability: A substantial
36% of users (160 of 442) estimate the cu-
mulative probability of winning the award
with and/or without the new player. This
strategy involves judging the distance, pro-
portion of area, or frequency of markings
across the threshold number of points to
win (e.g., Fig. 7). These users may be con-
fusing cumulative probability of winning
the award, which is the best cue in the de-
cision task, with probability of superior-
ity (i.e., probability that team does better
with the new player than without), which
is what we ask for in the estimation task.
However, since the probability of winning
increases monotonically with probability
of superiority, this strategy should theoret-
ically result in milder underestimation bias
than distance-based strategies.

Distribution Overlap: About 7% of users (31 of 442) describe
judging the overlap between distributions. While similar to distance-
based strategies, users conceptualize this strategy in terms of area rather
than the gap between distributions (Fig. 8). For example, one user said
they use HOPs “only to see how much of an overlap [there is] between
the two areas,” suggesting that they imagine contours of distributions
over the sets of animated draws. This strategy probably results in
underestimation bias similar to judging distance relative to variance.
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Fig. 9: Frequency of draws changing order strategy with HOPs.

Frequency of Draws Changing Order: This strategy is only rel-
evant to the HOPs condition, where only about 16% of users (19 of
121) employed it. It involves judging the number of animated frames in
which the draws from the two distributions switch order (Fig. 9). This
is the best way to estimate probability of superiority from HOPs [26].
If we think of the user as accumulating information across frames, the
precision of their inference is mostly limited by the number of frames
they watch. For example, in Figure 9 red scores higher than blue in
6 of the 8 frames, and watching only 8 frames limits the precision of
this inference to increments of 1

8 . The fact that only a handful of HOPs
users employ this strategy helps to explain why the performance of
HOPs users is worse than expected.

Switching Strategies: A substantial 29% of users (129 of 442)
switch between strategies in the middle of the task. For example,
one user of intervals without means described a mix of cumulative
probability and distribution overlap strategies: “If the red [distribution]
was completely past the dotted line then I would buy the new player
no matter what. If there were overlaps with blue I would just risk
assess to see if it was worth it to me or not.” While more of a meta-
strategy, our observation that a significant proportion of users switch
is important because it suggests that judgment processes involved in
graphical perception may not be consistent within each user.

5.2 Impacts of Visualization Design Choices
Users rely on visual features (Section 3.9) and strategies (Section 5.1)
to varying degrees depending on visualization design (Table 1).

Intervals: Roughly 75% of intervals users (85 of 112) rely on
relative position as a visual cue for effect size compared to 69% with
densities (68 of 99), 61% with HOPs (74 of 121), and 59% with quantile
dotplots (65 of 110). Of intervals users who look at relative position,
about 87% (74 of 85) employ an only distance strategy, while only about
13% (11 of 85) judge distance relative to variance . In other words,
only about 10% of intervals users (11 of 112) incorporate variance
into their judgments of distance. About 28% of intervals users (31 of
112) report looking at area, with about 55% of these users (17 of 31)
employing a distribution overlap strategy.

HOPs: About 61% of HOPs users (74 of 121) look at relative
position to judge effect size. Of HOPs users who rely on relative
position, merely 3% (2 of 74) use a distance relative to variance strategy.
However, looking at relative position is not mutually exclusive with
looking at frequency of draws, which 45% of HOPs users (54 of 121)
rely on as a visual feature. Among HOPs users who rely on frequencies,
about 69% (37 of 54) employ a cumulative probability strategy, while
about 35% (19 of 54) rely on the optimal strategy of counting the
frequency of draws changing order. Roughly 40% of HOPs users (48

Table 1: Frequency of strategies used per uncertainty visualization.

Strategy Intervals HOPs Densities Dotplots Overall

Distance 73 77 61 64 275
Rel. to Var. 11 9 10 5 35
Cumulative 34 50 30 46 160
Overlap 17 2 9 3 31
Draw Order 0 19 0 0 19
Switching 35 48 23 23 129
Total 112 121 99 110 442

of 121) mention switching strategies compared to 31% with intervals
(35 of 112), 23% with densities (23 of 99), and 21% with quantile
dotplots (23 of 110). Among HOPs users who switch strategies, about
81% (39 of 48) rely on the mean as a cue. Strategy switching involves
the mean for about 30% of HOPs users who rely on relative position
(22 of 74) compared to 43% of HOPs users who rely on frequency (23
of 54). That most HOPs users rely on relative position, and that those
who do rely on frequency are more likely to switch to or from relying
on the mean, helps to explain poor performance with HOPs.

Densities: About 69% of densities users (68 of 99) rely on relative
position as a visual cue. Of densities users who look at relative position,
only about 13% (9 of 68) employ a distance relative to variance strategy.
As one might expect, a substantial 36% of densities users (36 of 99)
rely on area as a cue, compared to 10% of quantile dotplots users (11
of 110). Among densities users who rely on area, about 53% (19 of
36) employ a cumulative probability strategy, while about 28% (10 of
36) employ a distribution overlap strategy. Interestingly, about 27% of
densities users (27 of 99) mention relying on the spread of distributions
as a cue, more than the 21% of users with intervals (24 of 112), 21%
with HOPs (25 of 121), and 10% with quantile dotplots (11 of 110)
who report relying on the same cue.

Quantile Dotplots: Roughly 59% of quantile dotplots users (65 of
110) describe looking at relative position to judge effect size, similar to
61% of users with HOPs (74 of 121) and less than the 69% of densities
users (68 of 99) and 76% of intervals users (85 of 112) who report using
the same cue. Merely 6% of quantile dotplots users who rely on relative
position (4 of 65) employ a distance relative to variance strategy. 37%
of quantile dotplots users (41 of 110) rely on frequency as a visual cue
by counting dots. About 81% of quantile dotplots users who rely on
frequency (33 of 41) employ a cumulative probability strategy.

Adding Means: A substantial 35% of users (155 of 442) describe
relying on the mean as a cue for effect size. If we split users based on
whether or not they start the task with means, about 31% of users (67
of 218) switch strategies when means are added to the charts halfway
through the task, compared to 10% (23 of 224) who switch strategies
when means are removed. This asymmetry in strategy switching sug-
gests that means are “sticky” as a cue: Among the 15% of users (67 of
442) who start with and rely on means, about 66% (44 of 67) attempt to
visually estimate means after means are removed from charts, almost
twice as many as the 34% (23 of 67) who switch to relying on other
cues. However, the impact of adding means on performance depends
on what other strategies a user is switching between. Among the 20%
of users (90 of 442) who rely on means and switch strategies, about
44% (40 of 90) just incorporate the mean into judgments of relative
position without relying on other visual cues. Other groups of users
switch between relying on means and less similar visual cues, with 34%
(31 of 90) also mentioning frequency and 12% (11 of 90) mentioning
area. That many users switch between relying on relative position and
means, and that strategies are heterogeneous, helps to explain why the
average impact of means on performance is small in our results.

6 GENERAL DISCUSSION

Our results suggest that design guidelines for visualizing effect size
should depend on the user’s task, the variance of distributions, and
design choices about axis scales. To provide concrete design guidelines
while acknowledging the inherent complexity of our results, we present
high-level take-aways for designers alongside relevant caveats.

Quantile dotplots support the most perceptually accurate dis-
tributional comparisons, at least among the visualization designs we
tested. Caveat: Asking users to perform two tasks may have led users
to rely on relatively simple strategies like cumulative probability more
than strategies which require more mental energy like frequency of
draws changing order. Conditions of high cognitive load seem to favor
uncertainty visualizations like quantile dotplots over HOPs.

Densities without means seem to support the best decision-
making across levels of variance. On a fixed axis scale, densities
without means and quantile dotplots with means perform best at lower
variance, while densities without means and intervals without means
perform best at higher variance. No visualization design we tested
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eliminated bias in decision-making at higher variance. Caveats: The
visualization design that leads to the least bias in decision-making de-
pends on the variance of distributions relative to axis scale. Future work
should investigate bias in decision-making over a gradient of variances
shown on a common scale, including charts with heterogeneous vari-
ances, as this would enable more exhaustive design recommendations.

Adding means leads to small biases in magnitude estimation
and decision-making from distributional comparisons, leading
users to underestimate effect size and make less utility-optimal de-
cisions in most in most cases we tested. Caveats: Although the biasing
effects of means are mostly negligible, our estimates of these biases
are probably very conservative for two reasons: (1) added means were
only highly salient in the HOPs condition; and (2) in the absence of
added means, users already tend to rely on relative position, a cue
which the mean merely reinforces. The effects of adding means on
decision quality reverse at high versus low variance, so these biases
may disappear for specific combinations of variance and axis scale.

Users rely on distance between distributions as a proxy for ef-
fect size, so designers should note when this will be misleading and
encourage more optimal strategies. Our quantitative analysis shows
that adding means induces small but reliable biases in magnitude estima-
tion, consistent with distance-based heuristics. Our qualitative analysis
of strategies verifies that the majority of users (357 of 442; 80.8%) rely
on distance between distributions or mean difference to judge effect
size. Caveats: Subtle design choices probably impact the tendency to
rely on distance heuristics versus other strategies. For example, includ-
ing a decision threshold annotation on our charts (Fig. 2) may have
encouraged users to judge effect size as cumulative probability, rather
than probability of superiority, contributing to underestimation bias.

6.1 Limitations
We only tested symmetrical distributions, and this may limit the gen-
eralizability of our inferences. Although we speculate that chart users
may rely on central tendency regardless of the family of a distribu-
tion, reasoning with multi-modal distributions in particular may involve
different strategies not accounted for in the present study.

Because we rely on self-reported strategies in our qualitative analysis,
our findings only reflect conscious strategies. This leaves out implicit
or automatic information processing such as visual adaptation [32] and
ensemble processing [51], except in rare cases where users report trying
to “roughly average” predictions presented as HOPs.

Our choice to incentivize the decision-making task but not magnitude
estimation may have contributed to the decoupling of performance
on our two tasks. We cannot disentangle this possible explanation
from evidence corroborating Kahneman and Tversky’s [31] distinction
between perceived probabilities and decision weights (see Section 4.4).

We control the incentives for our decision task rather than manipulat-
ing them, in part because it is not feasible to test dramatically different
incentives on Mechanical Turk. As such the risk preferences that we
measure as PSEs are representative of users optimizing small monetary
bonuses, and they may not capture how people respond to visualized
data in crisis situations when lives, careers, or millions of dollars are
at stake. However, by devising a task that is representative of a broad
class of decision problems (see Section 3.2), we make our results as
broadly applicable as possible. We speculate that the relative impacts of
visualization designs on risk preferences should generalize to decision
problems with similar utility functions.

6.2 Satisficing and Heterogeneity
The visual reasoning strategies that chart users rely on when making
judgments from uncertainty visualizations may not be what visual-
ization designers expect. We present evidence that, in the absence
of training, users satisfice by using suboptimal heuristics to decode
the signal from a chart. We also find that not all users rely on the
same strategies and that many users switch between strategies. Satisfic-
ing and heterogeneity in heuristics make it difficult both to anticipate
how people will read charts and to study the impact of design choices.
Conventionally, visualization research has characterized visualization
effectiveness by ranking visualization designs based on the performance

of the average user (e.g., [7]). However, in cases like the present study
where users are heterogeneous in their strategies, these averages may
not account for the experience of very many users and are probably
an oversimplification. Visualization researchers should be mindful
of satisficing and heterogeneity in users’ visual reasoning strategies,
attempt to model these strategies, and try to design ways of training
users to employ more optimal strategies.

6.3 Toward Better Models of Visualization Effectiveness

Because some users seem to adopt suboptimal strategies or switch be-
tween strategies when presented with an uncertainty visualization, mod-
els of visualization effectiveness which codify design knowledge and
drive automated visualization recommendation and authoring systems
should represent these strategies. We envision a new class of behavioral
models for visualization research which attempt to enumerate possible
strategies, such as those we identify in our qualitative analysis, and
learn how often users employ them to perform a specific task when
presented with a particular visualization design. Previous work [27]
demonstrates a related approach by calculating expected responses
based on a set of alternative perceptual proxies for visual comparison
and comparing these expectations to users’ actual responses. Like the
present study, this work describes the correspondence between expected
patterns and user behavior. Instead, we propose incorporating func-
tions representing predefined strategies into predictive models which
estimate the proportion of users employing a given strategy.

In a pilot study, we attempted to build such a model: a Bayesian
mixture model of alternative strategy functions. However, because
multiple strategies predict similar patterns of responses, we were not
able to fit the model due to problems with identifiability. This suggests
that the kind of model we propose will only be feasible if we design
experiments such that alternative strategies predict sufficiently different
patterns of responses. The approach of looking at the agreement be-
tween proxies and human behavior [27] suffers the same limitation, but
there is no analogous mechanism to identifiability in Bayesian models
to act as a fail-safe against unwarranted inferences. Future work should
continue pursuing this kind of strategy-aware behavioral modeling.

We want to emphasize that the proposed modeling approach is not
strictly quantitative, as the definition of strategy functions requires a
descriptive understanding of users’ visual reasoning. As such this ap-
proach offers a way to formalize the insights of qualitative analysis and
represent the gamut of possible user behaviors inside of visualization
recommendation and authoring systems.

7 CONCLUSION

We contribute findings from a mixed design experiment on Mechan-
ical Turk investigating how visualization design impacts judgments
and decisions from effect size. Our results suggest that visualization
designs which support the least biased estimation of effect size do not
necessarily support the best decision-making. We discuss how a user’s
sense of the signal in a chart may not necessarily be identical when
they use the same information for different tasks. We also find that
adding means to uncertainty visualizations induces small but reliable
biases consistent with users relying on visual distance between distri-
butions as a proxy for effect size. In a qualitative analysis of users’
visual reasoning strategies, we find that many users switch strategies
and do not employ an optimal strategy when one exists. We discuss
ways that canonical characterizations of graphical perception in terms
of average performance gloss over possible heterogeneity in user be-
havior, and we propose opportunities to build strategy-aware models
of visualization effectiveness which could be used to formalize design
knowledge in visualization recommendation and authoring systems
beyond context-agnostic rankings of chart types.
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